Discover the most talked about and latest scientific content & concepts.


Typically studies of the effects of aging on cognitive-motor performance emphasize changes in elderly populations. Although some research is directly concerned with when age-related decline actually begins, studies are often based on relatively simple reaction time tasks, making it impossible to gauge the impact of experience in compensating for this decline in a real world task. The present study investigates age-related changes in cognitive motor performance through adolescence and adulthood in a complex real world task, the real-time strategy video game StarCraft 2. In this paper we analyze the influence of age on performance using a dataset of 3,305 players, aged 16-44, collected by Thompson, Blair, Chen & Henrey [1]. Using a piecewise regression analysis, we find that age-related slowing of within-game, self-initiated response times begins at 24 years of age. We find no evidence for the common belief expertise should attenuate domain-specific cognitive decline. Domain-specific response time declines appear to persist regardless of skill level. A second analysis of dual-task performance finds no evidence of a corresponding age-related decline. Finally, an exploratory analyses of other age-related differences suggests that older participants may have been compensating for a loss in response speed through the use of game mechanics that reduce cognitive load.

Concepts: Regression analysis, Gerontology, Ageing, StarCraft, Reaction time, Video game genres, Segmented regression, Piecewise regression analysis


Ni supported on silica-alumina is an efficient and reusable photocatalyst for the reduction of CO2 by H2 to methane reaching selectivity above 95 % at CO2 conversions over 90 %. Although NiO behaves similarly, it undergoes a gradual deactivation upon reuse. The photocatalytic activity of Ni/silica-alumina under solar light derives in about 26 % from the visible light photoresponse.

Concepts: Carbon dioxide, Energy, Light, Carbon, Carbon monoxide, Titanium dioxide, Photocatalysis, Visible spectrum


Nanoscale photocatalysts have attracted much attention due to their high surface area to volume ratios. However, due to extremely high reactivity, TiO2 and ZnO nanoparticles prepared using different methods tend to either react with surrounding media or agglomerate, resulting in the formation of much larger flocs and significant loss in reactivity. This work investigates the photocatalytic degradation of carbamazepine (CBZ), a persistent pharmaceutical compound from wastewater (WW) using TiO2 and ZnO nanoparticles prepared in the presence of a water-soluble whey powder as stabilizer. The TiO2 and ZnO nanoparticles prepared in the presence of whey stabilizer displayed much less agglomeration and greater degradation power than those prepared without a stabilizer. Higher photocatalytic degradation of carbamazepine was observed (100%) by using whey stabilized TiO2 nanoparticles with 55min irradiation time as compared to ZnO nanoparticles (92%). The higher degradation of CBZ in wastewater by using TiO2 nanoparticles as compared to ZnO nanoparticles was due to formation of higher photo-generated holes with high oxidizing power of TiO2. The photocatalytic capacity of ZnO anticipated as similar to that of TiO2 as it has the same band gap energy (3.2eV) as TiO2. However, in the case of ZnO, photocorrosion frequently occurs with the illumination of UV light and this phenomenon is considered as one of the main reasons for the decrease of ZnO photocatalytic activity in aqueous solutions. Further, the estrogenic activity of photocatalyzed WW sample with CBZ and its by-products was carried out by yeast estrogen screen (YES) assay method. Based upon the YES test results, none of the samples showed estrogenic activity.

Concepts: Ultraviolet, Estrogen, Quantum dot, Titanium dioxide, Zinc oxide, Photocatalysis, Sunscreen, Band gap


At one time, psychologists aspired to build a science composed of interrelated descriptive laws and the theories that explain them–a nomothetic science. For various reasons this goal was abandoned. In its place, we have a collection of theories that, for the most part, are organized by topic and subdiscipline or by themes and shared language (e.g., characterization of cognition in terms of information processing, which is neither a law nor a rigorous theory but a viewpoint or approach). As things stand, although our theories and research are scientific, we have failed to create a coherent science. In this article the nomothetic goal is reconsidered, and an example of how we might begin to achieve it is described.

Concepts: Scientific method, Psychology, Physics, Cognition, Science, Experiment, Theory, Social sciences


Eukaryotic cells display an asymmetric distribution of cellular compartments relying on their adhesion and the underlying anisotropy of the actin and microtubule cytoskeleton. Studies using a minimal cell culture system based on confined adhesion on micropatterns have illustrated that trafficking compartments are well organized at the single cell level in response to the geometry of cellular adhesion cues. Expanding our analysis on cellular uptake processes, we have found that cellular adhesion additionally defines the topology of endocytosis and signaling. During endocytosis, transferrin (Tfn) and epidermal growth factor (EGF) concentrate at distinct cellular sites in micropatterned cells. Tfn is enriched in adhesive sites during uptake, whereas EGF endocytosis is restricted to the dorsal cellular surface. This unexpected dorsal/ventral asymmetry is regulated by uptake mechanisms and actin dynamics. Interestingly, restricted EGF uptake leads to asymmetry of EGF receptor activation that is required to sustain downstream signaling. Based on our results, we propose that differential sorting begins at the plasma membrane leading to spatially distinct intracellular trafficking routes that are well defined in space. We speculate that the intrinsic organization of trafficking pathways sustains an important coupling between the endocytic and signaling systems that allows cells to sense their environment.

Concepts: Protein, Cell, Eukaryote, Epidermal growth factor, Cytosol, Cell membrane, Cell biology, Cytoskeleton


Intimate partner violence affects millions of people globally. One possible contributing factor is poor self-control. Self-control requires energy, part of which is provided by glucose. For 21 days, glucose levels were measured in 107 married couples. To measure aggressive impulses, each evening participants stuck between 0 and 51 pins into a voodoo doll that represented their spouse, depending how angry they were with their spouse. To measure aggression, participants competed against their spouse on a 25-trial task in which the winner blasted the loser with loud noise through headphones. As expected, the lower the level of glucose in the blood, the greater number of pins participants stuck into the voodoo doll, and the higher intensity and longer duration of noise participants set for their spouse.

Concepts: Aggression, Violence


The long-held but erroneous assumption of never-ending rapid growth in biomedical science has created an unsustainable hypercompetitive system that is discouraging even the most outstanding prospective students from entering our profession-and making it difficult for seasoned investigators to produce their best work. This is a recipe for long-term decline, and the problems cannot be solved with simplistic approaches. Instead, it is time to confront the dangers at hand and rethink some fundamental features of the US biomedical research ecosystem.

Concepts: Time, Medical research, Biomedical scientist


The quest for Earth-like planets is a major focus of current exoplanet research. Although planets that are Earth-sized and smaller have been detected, these planets reside in orbits that are too close to their host star to allow liquid water on their surfaces. We present the detection of Kepler-186f, a 1.11 ± 0.14 Earth-radius planet that is the outermost of five planets, all roughly Earth-sized, that transit a 0.47 ± 0.05 solar-radius star. The intensity and spectrum of the star’s radiation place Kepler-186f in the stellar habitable zone, implying that if Kepler-186f has an Earth-like atmosphere and water at its surface, then some of this water is likely to be in liquid form.

Concepts: Planet, Mars, Mercury, Star, Gas giant, Terrestrial planet, Extrasolar planet, Habitable zone


Negative frequency-dependent sexual selection maintains striking polymorphisms in secondary sexual traits in several animal species. Here, we test whether frequency of beardedness modulates perceived attractiveness of men’s facial hair, a secondary sexual trait subject to considerable cultural variation. We first showed participants a suite of faces, within which we manipulated the frequency of beard thicknesses and then measured preferences for four standard levels of beardedness. Women and men judged heavy stubble and full beards more attractive when presented in treatments where beards were rare than when they were common, with intermediate preferences when intermediate frequencies of beardedness were presented. Likewise, clean-shaven faces were least attractive when clean-shaven faces were most common and more attractive when rare. This pattern in preferences is consistent with negative frequency-dependent selection.

Concepts: Selection, Facial hair, Secondary sex characteristic, Shaving, Beard


The identification and quantification of methane emissions from natural gas production has become increasingly important owing to the increase in the natural gas component of the energy sector. An instrumented aircraft platform was used to identify large sources of methane and quantify emission rates in southwestern PA in June 2012. A large regional flux, 2.0-14 g CH4 s(-1) km(-2), was quantified for a ∼2,800-km(2) area, which did not differ statistically from a bottom-up inventory, 2.3-4.6 g CH4 s(-1) km(-2). Large emissions averaging 34 g CH4/s per well were observed from seven well pads determined to be in the drilling phase, 2 to 3 orders of magnitude greater than US Environmental Protection Agency estimates for this operational phase. The emissions from these well pads, representing ∼1% of the total number of wells, account for 4-30% of the observed regional flux. More work is needed to determine all of the sources of methane emissions from natural gas production, to ascertain why these emissions occur and to evaluate their climate and atmospheric chemistry impacts.

Concepts: Carbon dioxide, Hydrogen, Petroleum, Carbon monoxide, Hydrocarbon, Natural gas, Methane, Greenhouse gas