Discover the most talked about and latest scientific content & concepts.


Microbial communities are ubiquitous in both natural and artificial environments. However, microbial diversity is usually reduced under strong selection pressures, such as those present in habitats rich in recalcitrant or toxic compounds displaying antimicrobial properties. Caffeine is a natural alkaloid present in coffee, tea and soft drinks with well-known antibacterial properties. Here we present the first systematic analysis of coffee machine-associated bacteria. We sampled the coffee waste reservoir of ten different Nespresso machines and conducted a dynamic monitoring of the colonization process in a new machine. Our results reveal the existence of a varied bacterial community in all the machines sampled, and a rapid colonisation process of the coffee leach. The community developed from a pioneering pool of enterobacteria and other opportunistic taxa to a mature but still highly variable microbiome rich in coffee-adapted bacteria. The bacterial communities described here, for the first time, are potential drivers of biotechnologically relevant processes including decaffeination and bioremediation.


Genetic engineering technologies can be used both to create transgenic mosquitoes carrying antipathogen effector genes targeting human malaria parasites and to generate gene-drive systems capable of introgressing the genes throughout wild vector populations. We developed a highly effective autonomous Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9)-mediated gene-drive system in the Asian malaria vector Anopheles stephensi, adapted from the mutagenic chain reaction (MCR). This specific system results in progeny of males and females derived from transgenic males exhibiting a high frequency of germ-line gene conversion consistent with homology-directed repair (HDR). This system copies an ∼17-kb construct from its site of insertion to its homologous chromosome in a faithful, site-specific manner. Dual anti-Plasmodium falciparum effector genes, a marker gene, and the autonomous gene-drive components are introgressed into ∼99.5% of the progeny following outcrosses of transgenic lines to wild-type mosquitoes. The effector genes remain transcriptionally inducible upon blood feeding. In contrast to the efficient conversion in individuals expressing Cas9 only in the germ line, males and females derived from transgenic females, which are expected to have drive component molecules in the egg, produce progeny with a high frequency of mutations in the targeted genome sequence, resulting in near-Mendelian inheritance ratios of the transgene. Such mutant alleles result presumably from nonhomologous end-joining (NHEJ) events before the segregation of somatic and germ-line lineages early in development. These data support the design of this system to be active strictly within the germ line. Strains based on this technology could sustain control and elimination as part of the malaria eradication agenda.


To define the cellular mechanisms of up-regulated inflammatory gene expression and down-regulated antiviral response in people experiencing perceived social isolation (loneliness), we conducted integrative analyses of leukocyte gene regulation in humans and rhesus macaques. Five longitudinal leukocyte transcriptome surveys in 141 older adults showed up-regulation of the sympathetic nervous system (SNS), monocyte population expansion, and up-regulation of the leukocyte conserved transcriptional response to adversity (CTRA). Mechanistic analyses in a macaque model of perceived social isolation confirmed CTRA activation and identified selective up-regulation of the CD14(++)/CD16(-) classical monocyte transcriptome, functional glucocorticoid desensitization, down-regulation of Type I and II interferons, and impaired response to infection by simian immunodeficiency virus (SIV). These analyses identify neuroendocrine-related alterations in myeloid cell population dynamics as a key mediator of CTRA transcriptome skewing, which may both propagate perceived social isolation and contribute to its associated health risks.


Exoplanet detections have revolutionized astronomy, offering new insights into solar system architecture and planet demographics. While nearly 1,900 exoplanets have now been discovered and confirmed, none are still in the process of formation. Transition disks, protoplanetary disks with inner clearings best explained by the influence of accreting planets, are natural laboratories for the study of planet formation. Some transition disks show evidence for the presence of young planets in the form of disk asymmetries or infrared sources detected within their clearings, as in the case of LkCa 15 (refs 8, 9). Attempts to observe directly signatures of accretion onto protoplanets have hitherto proven unsuccessful. Here we report adaptive optics observations of LkCa 15 that probe within the disk clearing. With accurate source positions over multiple epochs spanning 2009-2015, we infer the presence of multiple companions on Keplerian orbits. We directly detect Hα emission from the innermost companion, LkCa 15 b, evincing hot (about 10,000 kelvin) gas falling deep into the potential well of an accreting protoplanet.


Elevated postprandial blood glucose levels constitute a global epidemic and a major risk factor for prediabetes and type II diabetes, but existing dietary methods for controlling them have limited efficacy. Here, we continuously monitored week-long glucose levels in an 800-person cohort, measured responses to 46,898 meals, and found high variability in the response to identical meals, suggesting that universal dietary recommendations may have limited utility. We devised a machine-learning algorithm that integrates blood parameters, dietary habits, anthropometrics, physical activity, and gut microbiota measured in this cohort and showed that it accurately predicts personalized postprandial glycemic response to real-life meals. We validated these predictions in an independent 100-person cohort. Finally, a blinded randomized controlled dietary intervention based on this algorithm resulted in significantly lower postprandial responses and consistent alterations to gut microbiota configuration. Together, our results suggest that personalized diets may successfully modify elevated postprandial blood glucose and its metabolic consequences. VIDEO ABSTRACT.


Nature provides a multitude of examples of multifunctional structural materials in which trade-offs are imposed by conflicting functional requirements. One such example is the biomineralized armor of the chiton Acanthopleura granulata, which incorporates an integrated sensory system that includes hundreds of eyes with aragonite-based lenses. We use optical experiments to demonstrate that these microscopic lenses are able to form images. Light scattering by the polycrystalline lenses is minimized by the use of relatively large, crystallographically aligned grains. Multiscale mechanical testing reveals that as the size, complexity, and functionality of the integrated sensory elements increase, the local mechanical performance of the armor decreases. However, A. granulata has evolved several strategies to compensate for its mechanical vulnerabilities to form a multipurpose system with co-optimized optical and structural functions.


Nurses acting in primary care roles are central in addressing obesity as a public health priority. Nurses with a lower Body Mass Index have been shown to have negative attitudes towards obesity. Additionally, where the patient is perceived as being responsible for their excess weight, a negative attitude may also be held. The extent to which negative attitudes may influence the advice provided by nurses to obese patients is unknown.


Archaeological accounts of cultural change reveal a fundamental conflict: Some suggest that change is gradual, accelerating over time, whereas others indicate that it is punctuated, with long periods of stasis interspersed by sudden gains or losses of multiple traits. Existing models of cultural evolution, inspired by models of genetic evolution, lend support to the former and do not generate trajectories that include large-scale punctuated change. We propose a simple model that can give rise to both exponential and punctuated patterns of gain and loss of cultural traits. In it, cultural innovation comprises several realistic interdependent processes that occur at different rates. The model also takes into account two properties intrinsic to cultural evolution: the differential distribution of traits among social groups and the impact of environmental change. In our model, a population may be subdivided into groups with different cultural repertoires leading to increased susceptibility to cultural loss, whereas environmental change may lead to rapid loss of traits that are not useful in a new environment. Taken together, our results suggest the usefulness of a concept of an effective cultural population size.


Diabetes mellitus (DM) is one of the most common endocrine metabolic disorders. In addition to exercise and diet, oral anti-diabetic drugs have been used as a part of the management strategy worldwide. Unfortunately, none of the conventional anti-diabetic drugs are without side effects, and these drugs pose an economic burden. Therefore, the investigation of novel anti-diabetic regimens is a major challenge for researchers, in which nature has been the primary resource for the discovery of potential therapeutics. Many plants have been shown to act as anti-diabetic agents, in which the main active constituents are believed to be polyphenols. Natural products containing high polyphenol levels can control carbohydrate metabolism by various mechanisms, such as protecting and restoring beta-cell integrity, enhancing insulin releasing activity, and increasing cellular glucose uptake. Blackberries, red grapes, apricots, eggplant and popular drinks such as coffee, cocoa and green tea are all rich in polyphenols, which may dampen insulin resistance and be natural alternatives in the treatment of diabetes. Therefore, the aim of this review is to report on the available anti-diabetic polyphenols (medicinal plants, fruits and vegetables), their mechanisms in the various pathways of DM and their correlations with DM. Additionally, this review emphasizes the types of polyphenols that could be potential future resources in the treatment of DM via either novel regimens or as supplementary agents.


Animals and human beings sense and react to real/potential dangerous stimuli. However, the supraspinal mechanisms relating noxious sensing and nocifensive behavior are mostly unknown. The collateralization and spatial organization of interrelated neurons are important determinants of coordinated network function. Here we electrophysiologically studied medial medullary reticulospinal neurons (mMRF-RSNs) antidromically identified from the cervical cord of anaesthetized cats and found that, 1) more than 40% (79/183) of the sampled mMRF-RSNs emitted bifurcating axons running within the dorsolateral (DLF) and ventromedial (VMF) ipsilateral fascicles, 2) more than 50% (78/151) of the tested mMRF-RSNs with axons running in the VMF collateralized to the subnucleus reticularis dorsalis (SRD) that also sent ipsilateral descending fibers bifurcating within the DLF and the VMF. This percentage of mMRF collateralization to the SRD increased to more than 81% (53/65) when considering the subpopulation of mMRF-RSNs responsive to noxiously heating the skin, 3) reciprocal monosynaptic excitatory relationships were electrophysiologically demonstrated between noxious sensitive mMRF-RSNs and SRD cells, and 4) injection of the anterograde tracer Phaseolus vulgaris leucoagglutinin evidenced mMRF to SRD and SRD to mMRF projections contacting the soma and proximal dendrites. The data demonstrated a SRD-mMRF network interconnected mainly through collaterals of descending axons running within the VMF, with the subset of noxious sensitive cells forming a reverberating circuit probably amplifying mutual outputs simultaneously regulating motor activity and spinal noxious afferent input. The results provide evidence that noxious stimulation positively engage a reticular SRD-mMRF-SRD network involved in pain-sensory-to-motor transformation and modulation.