Discover the most talked about and latest scientific content & concepts.

Journal: The Plant cell


Cultivated rice (Oryza sativa L.) was domesticated from wild rice (Oryza rufipogon Griff.), which typically displays fewer grains per panicle and longer grains than cultivated rice. In addition, wild rice has long awns, whereas cultivated rice has short awns or lacks them altogether. These changes represent critical events in rice domestication. Here, we identified a major gene, GRAIN NUMBER, GRAIN LENGTH AND AWN DEVELOPMENT 1 (GAD1), that regulates those critical changes during rice domestication. GAD1 is located on chromosome 8 and is predicted to encode a small secretary signal peptide belonging to the EPIDERMAL PATTERNING FACTOR-LIKE family. A frame-shift insertion in gad1 destroyed the conserved cysteine residues of the peptide, resulting in a loss of function, and causing the increased number of grains per panicle, shorter grains and awnless phenotype characteristic of cultivated rice. Our findings provide a useful paradigm for revealing functions of peptide signal molecules in plant development and helps elucidate the molecular basis of rice domestication.

Concepts: Maize


Flattened leaf architecture is not a default state but depends on positional information to precisely coordinate patterns of cell division in the growing primordium. This information is provided, in part, by the boundary between the adaxial (top) and abaxial (bottom) domains of the leaf, which are specified via an intricate gene regulatory network whose precise circuitry remains poorly defined. Here, we examined the contribution of the ASYMMETRIC LEAVES (AS) pathway to adaxial-abaxial patterning in Arabidopsis thaliana and demonstrate that AS1-AS2 affects this process via multiple, distinct regulatory mechanisms. AS1-AS2 uses Polycomb-dependent and -independent mechanisms to directly repress the abaxial determinants MIR166A, YABBY5, and AUXIN RESPONSE FACTOR3 (ARF3), as well as a nonrepressive mechanism in the regulation of the adaxial determinant TAS3A. These regulatory interactions, together with data from prior studies, lead to a model in which the sequential polarization of determinants, including AS1-AS2, explains the establishment and maintenance of adaxial-abaxial leaf polarity. Moreover, our analyses show that the shared repression of ARF3 by the AS and trans-acting small interfering RNA (ta-siRNA) pathways intersects with additional AS1-AS2 targets to affect multiple nodes in leaf development, impacting polarity as well as leaf complexity. These data illustrate the surprisingly multifaceted contribution of AS1-AS2 to leaf development showing that, in conjunction with the ta-siRNA pathway, AS1-AS2 keeps the Arabidopsis leaf both flat and simple.

Concepts: Arabidopsis thaliana, Arabidopsis, Fern, Leaf


The corn smut fungus Ustilago maydis is a model organism for elucidating host colonization strategies of biotrophic fungi. Here we performed an in depth transcriptional profiling of the entire plant-associated development of U. maydis wild-type strains. In our analysis we focused on fungal metabolism, nutritional strategies, secreted effectors and regulatory networks. Secreted proteins were enriched in three distinct expression modules corresponding to stages on the plant surface, establishment of biotrophy and induction of tumors. These modules are likely the key determinants for U. maydis virulence. With respect to nutrient utilization, we observed that expression of several nutrient transporters was tied to these virulence modules rather than being controlled by nutrient availability. We show that oligopeptide transporters likely involved in nitrogen assimilation are important virulence factors. By measuring the intramodular connectivity of transcription factors, we identified the potential drivers for the virulence modules. While known components of the b-mating type cascade emerged as inducers for the plant surface and biotrophy module, we identified a set of yet uncharacterized transcription factors as likely responsible for expression of the tumor module. We demonstrate a crucial role for leaf tumor formation and effector gene expression for one of these transcription factors.

Concepts: DNA, Gene, Genetics, Gene expression, Transcription, Developmental biology, Fungus, Corn smut


Intense artificial selection over the last 100 years has produced elite maize (Zea mays) inbred lines that combine to produce high-yielding hybrids. To further our understanding of how genome and transcriptome variation contribute to the production of high-yielding hybrids, we generated a draft genome assembly of the inbred line PH207 to complement and compare with the existing B73 reference sequence. B73 is a founder of the Stiff Stalk germplasm pool, while PH207 is a founder of Iodent germplasm, both of which have contributed substantially to the production of temperate commercial maize and are combined to make heterotic hybrids. Comparison of these two assemblies revealed over 2,500 genes present in only one of the two genotypes and 136 gene families that have undergone extensive expansion or contraction. Transcriptome profiling revealed extensive expression variation, with as many as 10,564 differentially expressed transcripts and 7,128 transcripts expressed in only one of the two genotypes in a single tissue. Genotype-specific genes were more likely to have tissue/condition-specific expression and lower transcript abundance. The availability of a high-quality genome assembly for the elite maize inbred PH207 expands our knowledge of the breadth of natural genome and transcriptome variation in elite maize inbred lines across heterotic pools.

Concepts: DNA, Gene, Genetics, Gene expression, Evolution, Genome, Population genetics, Maize


While transformation of the major monocot crops is currently possible, the process typically remains confined to one or two genotypes per species, often with poor agronomics, and efficiencies that place these methods beyond the reach of most academic laboratories. Here, we report a transformation approach involving overexpression of the maize (Zea mays) Baby boom (Bbm) and maize Wuschel2 (Wus2) genes, which produced high transformation frequencies in numerous previously non-transformable maize inbred lines. For example, the Pioneer inbred PHH5G is recalcitrant to biolistic and Agrobacterium transformation. However, when Bbm and Wus2 were expressed, transgenic calli were recovered from over 40% of the starting explants, with most producing healthy, fertile plants. Another limitation for many monocots is the intensive labor and greenhouse space required to supply immature embryos for transformation. This problem could be alleviated by using alternative target tissues that could be supplied consistently with automated preparation. As a major step toward this objective, we transformed Bbm and Wus2 directly into either embryo slices from mature seed or leaf segments from seedlings in a variety of Pioneer inbred lines, routinely recovering healthy, fertile T0 plants. Finally, we demonstrated that the maize Bbm and Wus2 genes stimulate transformation in sorghum (Sorghum bicolor) immature embryos, sugarcane (Saccharum officinarum) callus, and indica rice (Oryza sativa var. indica) callus.

Concepts: Pregnancy, Poaceae, Maize, Seed, Monocotyledon, Rice, Energy crops, Sugarcane


The flowers of major cereals are arranged on reproductive branches known as spikelets, which group together to form an inflorescence. Diversity for inflorescence architecture has been exploited during domestication to increase crop yields, and genetic variation for this trait has potential to further boost grain production. Multiple genes that regulate inflorescence architecture have been identified by studying alleles that modify gene activity or dosage; however, little is known in wheat. Here, we showTEOSINTE BRANCHED1(TB1) regulates inflorescence architecture in bread wheat (Triticum aestivumL.) by investigating lines that display a form of inflorescence branching known as ‘paired spikelets’. We show that TB1 interacts with FLOWERING LOCUS T1, and that increased dosage ofTB1alters inflorescence architecture and growth rate in a process that includes reduced expression of meristem identity genes, with allelic diversity forTB1found to associate genetically with paired spikelet development in modern cultivars. We proposeTB1coordinates formation of axillary spikelets during the vegetative to floral transition, and that alleles known to modify dosage or function ofTB1could help increase wheat yields.

Concepts: Gene, Genetics, Allele, Evolution, Wheat, Cereal, Maize, Locus


The availability of a whole-genome sequenced mutant population and the cataloging of mutations of each line at a single-nucleotide resolution facilitate functional genomic analysis. To this end, we generated and sequenced a fast-neutron-induced mutant population in the model rice cultivar Kitaake (Oryza sativa L. ssp. japonica), which completes its life cycle in 9 weeks. We sequenced 1,504 mutant lines at 45-fold coverage and identified 91,513 mutations affecting 32,307 genes, i.e., 58% of all rice genes. We detected an average of 61 mutations per line. Mutation types include single base substitutions, deletions, insertions, inversions, translocations, and tandem duplications. We observed a high proportion of loss-of-function mutations. We identified an inversion affecting a single gene as the causative mutation for the short-grain phenotype in one mutant line. This result reveals the usefulness of the resource for efficient, cost-effective identification of genes conferring specific phenotypes. To facilitate public access to this genetic resource, we established an open access database called KitBase that provides access to sequence data and seed stocks. This population complements other available mutant collections and gene-editing technologies. This work demonstrates how inexpensive next-generation sequencing can be applied to generate a high-density catalog of mutations.

Concepts: DNA, Gene, Genetics, Mutation, Evolution, Mutant, Point mutation, Rice


Tocopherols, tocotrienols and plastochromanols (collectively termed tocochromanols) are lipid-soluble antioxidants synthesized by all plants. Their dietary intake, primarily from seed oils, provides vitamin E and other health benefits. Tocochromanol biosynthesis has been dissected in the dicot Arabidopsis thaliana, which has green, photosynthetic seeds, but our understanding of tocochromanol accumulation in major crops, whose seeds are non-photosynthetic, remains limited. To understand the genetic control of tocochromanols in grain, we conducted a joint linkage and genome-wide association study in the 5,000-line U.S. maize (Zea mays) nested association-mapping panel. Fifty-two quantitative trait loci (QTL) for individual and total tocochromanols were identified, and of the 14 resolved to individual genes, six encode novel activities affecting tocochromanols in plants. These include two chlorophyll biosynthetic enzymes that explain the majority of tocopherol variation, which was not predicted, given that, like most major cereal crops, maize grain is non-photosynthetic. This comprehensive assessment of natural variation in vitamin E levels in maize establishes the foundation for improving tocochromanol and vitamin E content in seeds of maize and other major cereal crops.

Concepts: Genetics, Antioxidant, Wheat, Poaceae, Cereal, Maize, Vitamin E, Tocopherol


Detailed functional analyses of many fundamentally-important plant genes via conventional loss-of-function approaches are impeded by severe pleiotropic phenotypes. In particular, mutations in genes that are required for basic cellular functions and/or reproduction often interfere with the generation of homozygous mutant plants, precluding further functional studies. To overcome this limitation, we devised a CRISPR-based tissue-specific knockout system, CRISPR-TSKO, enabling the generation of somatic mutations in particular plant cell types, tissues, and organs. In Arabidopsis, CRISPR-TSKO mutations in essential genes caused well-defined, localized phenotypes in the root cap, stomatal lineage, or entire lateral roots. The underlying modular cloning system allows for efficient selection, identification, and functional analysis of mutant lines directly in the first transgenic generation. The efficacy of CRISPR-TSKO opens new avenues to discover and analyze gene functions in spatial and temporal contexts of plant life while avoiding pleiotropic effects of system-wide loss of gene function.


Circadian control of gene expression is well characterized at the transcriptional level, but little is known about diel or circadian control of translation. Genome-wide translation state profiling of mRNAs in Arabidopsis thaliana seedlings grown in long day was performed to estimate ribosome loading per mRNA. The experiments revealed extensive translational regulation of key biological processes. Notably, translation of mRNAs for ribosomal proteins and mitochondrial respiration peaked at night. Central clock mRNAs are among those subject to fluctuations in ribosome loading. There was no consistent phase relationship between peak translation states and peak transcript levels. The overlay of distinct transcriptional and translational cycles can be expected to alter the waveform of the protein synthesis rate. Plants that constitutively overexpress the clock gene CCA1 showed phase shifts in peak translation, with a 6-h delay from midnight to dawn or from noon to evening being particularly common. Moreover, cycles of ribosome loading that were detected under continuous light in the wild type collapsed in the CCA1 overexpressor. Finally, at the transcript level, the CCA1-ox strain adopted a global pattern of transcript abundance that was broadly correlated with the light-dark environment. Altogether, these data demonstrate that gene-specific diel cycles of ribosome loading are controlled in part by the circadian clock.

Concepts: DNA, Protein, Gene, Gene expression, Transcription, RNA, Ribosome, Messenger RNA