Discover the most talked about and latest scientific content & concepts.

Journal: Journal of exposure science & environmental epidemiology


Phthalates and bisphenol A (BPA) are high production volume and ubiquitous chemicals that are quickly metabolized in the body. Traditionally, studies have relied on single spot urine analyses to assess exposure; ignoring variability in concentrations throughout a day or over a longer period of time. We compared BPA and phthalate metabolite results from urine samples collected at five different time points. Participants (n=80) were asked to collect all voids in a 24 h period on a weekday and then again on a weekend before 20 weeks of pregnancy. During the second and third trimesters and in the postpartum period, single spot urines were collected. Variability over time in urinary concentrations was assessed using intraclass correlation coefficients (ICCs) and the sensitivity to correctly classify a single sample as high or low versus the geometric mean (GM) of all samples was calculated. We found low reproducibility and sensitivity of BPA and all phthalate metabolites throughout pregnancy and into the postpartum period but much higher reproducibility within a day. Time of day when the urine was collected was a significant predictor of specific gravity adjusted exposure levels. We concluded that, if the interest is in average exposures across pregnancy, maternal/fetal exposure estimation may be more accurate if multiple measurements, collected across the course of the entire pregnancy, rather than a single spot measure, are performed.Journal of Exposure Science and Environmental Epidemiology advance online publication, 24 September 2014; doi:10.1038/jes.2014.65.

Concepts: Plastic, Metabolism, Childbirth, Pregnancy, Arithmetic mean, Hour, Bisphenol A, Time


Inexpensive cloth masks are widely used in developing countries to protect from particulate pollution albeit limited data on their efficacy exists. This study examined the efficiency of four types of masks (three types of cloth masks and one type of surgical mask) commonly worn in the developing world. Five monodispersed aerosol sphere size (30, 100, and 500 nm, and 1 and 2.5 μm) and diluted whole diesel exhaust was used to assess facemask performance. Among the three cloth mask types, a cloth mask with an exhaust valve performed best with filtration efficiency of 80-90% for the measured polystyrene latex (PSL) particle sizes. Two styles of commercially available fabric masks were the least effective with a filtration efficiency of 39-65% for PSL particles, and they performed better as the particle size increased. When the cloth masks were tested against lab-generated whole diesel particles, the filtration efficiency for three particle sizes (30, 100, and 500 nm) ranged from 15% to 57%. Standard N95 mask performance was used as a control to compare the results with cloth masks, and our results suggest that cloth masks are only marginally beneficial in protecting individuals from particles<2.5 μm. Compared with cloth masks, disposable surgical masks are more effective in reducing particulate exposure.Journal of Exposure Science and Environmental Epidemiology advance online publication, 17 August 2016; doi:10.1038/jes.2016.42.

Concepts: Soot, Developing country, Mask, Surgical mask, Air pollution, Particulate, Masks, Diesel particulate matter


Wristbands are increasingly used for assessing personal chemical exposures. Unlike some exposure assessment tools, guidelines for wristbands, such as preparation, applicable chemicals, and transport and storage logistics, are lacking. We tested the wristband’s capacity to capture and retain 148 chemicals including polychlorinated biphenyls (PCBs), pesticides, flame retardants, polycyclic aromatic hydrocarbons (PAHs), and volatile organic chemicals (VOCs). The chemicals span a wide range of physical-chemical properties, with log octanol-air partitioning coefficients from 2.1 to 13.7. All chemicals were quantitatively and precisely recovered from initial exposures, averaging 102% recovery with relative SD ≤21%. In simulated transport conditions at +30 °C, SVOCs were stable up to 1 month (average: 104%) and VOC levels were unchanged (average: 99%) for 7 days. During long-term storage at -20 °C up to 3 (VOCs) or 6 months (SVOCs), all chemical levels were stable from chemical degradation or diffusional losses, averaging 110%. Applying a paired wristband/active sampler study with human participants, the first estimates of wristband-air partitioning coefficients for PAHs are presented to aid in environmental air concentration estimates. Extrapolation of these stability results to other chemicals within the same physical-chemical parameters is expected to yield similar results. As we better define wristband characteristics, wristbands can be better integrated in exposure science and epidemiological studies.Journal of Exposure Science and Environmental Epidemiology advance online publication, 26 July 2017; doi:10.1038/jes.2017.9.

Concepts: Organic compounds, Epidemiology, Flame retardant, Biphenyl, Organic chemistry, Polycyclic aromatic hydrocarbon, Volatile organic compound, Polychlorinated biphenyl


Potted plants have demonstrated abilities to remove airborne volatile organic compounds (VOC) in small, sealed chambers over timescales of many hours or days. Claims have subsequently been made suggesting that potted plants may reduce indoor VOC concentrations. These potted plant chamber studies reported outcomes using various metrics, often not directly applicable to contextualizing plants' impacts on indoor VOC loads. To assess potential impacts, 12 published studies of chamber experiments were reviewed, and 196 experimental results were translated into clean air delivery rates (CADR, m3/h), which is an air cleaner metric that can be normalized by volume to parameterize first-order loss indoors. The distribution of single-plant CADR spanned orders of magnitude, with a median of 0.023 m3/h, necessitating the placement of 10-1000 plants/m2 of a building’s floor space for the combined VOC-removing ability by potted plants to achieve the same removal rate that outdoor-to-indoor air exchange already provides in typical buildings (~1 h-1). Future experiments should shift the focus from potted plants' (in)abilities to passively clean indoor air, and instead investigate VOC uptake mechanisms, alternative biofiltration technologies, biophilic productivity and well-being benefits, or negative impacts of other plant-sourced emissions, which must be assessed by rigorous field work accounting for important indoor processes.


Arsenic crosses the placenta and may have adverse consequences in utero and later in life. At present, little is known about arsenic concentrations in placenta and their relation to maternal and infant exposures particularly at common levels of exposure. We measured placenta arsenic in a US cohort potentially exposed via drinking water from private wells, and evaluated the relationships between placenta and maternal and infant biomarker arsenic concentrations. We measured total arsenic concentrations in placental samples from women enrolled in the New Hampshire Birth Cohort Study (N=766). We compared these data to maternal urinary arsenic (total arsenic and individual species) collected at approximately 24-28 week gestation, along with maternal post-partum toenails and infant toenails using non-parametric multivariate analysis of log10-transformed data. We also examined the association between placental arsenic and household drinking water arsenic. Placenta arsenic concentrations were related to arsenic concentrations in maternal urine (β 0.55, P value <0.0001), maternal (β 0.30, P value 0.0196) and infant toenails (β 0.40, P value 0.0293) and household drinking water (β 0.09, P value <0.0001). Thus, our data suggest that placenta arsenic concentrations reflect both maternal and infant exposures.Journal of Exposure Science and Environmental Epidemiology advance online publication, 25 March 2015; doi:10.1038/jes.2015.16.

Concepts: Water, Placenta, Statistics, Biomarker, Breastfeeding, Epidemiology, Cohort study, Childbirth


Several phthalates, particularly diethyl phthalate (DEP) and di-n-butyl phthalate, can be used in personal care products (PCPs) to fix fragrance and hold color. We investigated associations between women’s reported use of PCPs within the 24 h before urine collection and concentrations of several urinary phthalate metabolites. Between 2002 and 2005, 337 women provided spot urine samples and answered questions regarding their use of 13 PCPs at a follow-up visit 3-36 months after pregnancy. We examined associations between urinary concentrations of several phthalate metabolites and use of PCPs using linear regression. Use of individual PCPs ranged from 7% (nail polish) to 91% (deodorant). After adjusting for age, education, and urinary creatinine, women reporting use of perfume had 2.92 times higher (95% CI: 2.20-3.89) concentration of monoethyl phthalate (MEP; the primary metabolite of DEP) than other women. Other PCPs that were significantly associated with MEP concentrations included: hair spray, nail polish, and deodorant. MEP concentrations increased with the number of PCPs used. PCP use was widespread in this group of recently pregnant women. Women’s use of PCPs, particularly of perfumes and fragranced products, was positively associated with urinary concentration of multiple phthalate metabolites.Journal of Exposure Science and Environmental Epidemiology advance online publication, 21 November 2012; doi:10.1038/jes.2012.105.

Concepts: Diethyl phthalate, Metabolite, Phthalate, Perfume, Pregnancy, Toiletry, Cosmetics, Phthalates


The ever-increasing popularity of bottled water means that it is important to analyze not only its mineral content but also, above all, its content of possible contaminants, especially the organic ones. In this respect, bottled waters are a special case, because apart from organic chemical contaminants derived from the well from which they were acquired, their secondary contamination is always possible, during treatment or storage or transport in unsuitable conditions (sunlight and elevated temperature). This paper describes how various factors, from the area around the well, and the method of drawing and treating water, to the manner in which the finished product is stored and transported may affect the quality of bottled waters. It also summarizes literature information on the levels of organic contaminants in various kinds of bottled water samples.


Cooking oil fumes (COF) contain polycyclic aromatic hydrocarbons (PAHs), heterocyclic aromatic amines, benzene, and formaldehyde, which may cause oxidative damages to DNA and lipids. We assessed the relations between exposure to COF and subsequent oxidative DNA damage and lipid peroxidation among military cooks and office-based soldiers. The study population, including 61 Taiwanese male military cooks and a reference group of 37 office soldiers, collected urine samples pre-shift of the first weekday and post-shift of the fifth workday. We measured airborne particulate PAHs in military kitchens and offices and concentrations of urinary 1-OHP, a biomarker of PAH exposure, urinary 8-hydroxydeoxyguanosine (8-OHdG), a biomarkers of oxidative DNA damage, and urinary isoprostane (Isop). Airborne particulate PAHs levels in kitchens significantly exceeded those in office areas. The concentrations of urinary 1-OHP among military cooks increased significantly after 5 days of exposure to COF. Using generalized estimating equation analysis adjusting for confounding, a change in log(8-OHdG) and log(Isop) were statistically significantly related to a unit change in log(1-OHP) (regression coefficient (β), β=0.06, 95% CI 0.001-0.12) and (β=0.07, 95% CI 0.001-0.13), respectively. Exposure to PAHs, or other compounds in cooking oil fumes, may cause both oxidative DNA damage and lipid peroxidation.

Concepts: Aromatic hydrocarbon, Hydrocarbon, Benzene, Carbon, Regression analysis, Naphthalene, Aromaticity, Polycyclic aromatic hydrocarbon


Buildings consume nearly 40% of primary energy production globally. Certified green buildings substantially reduce energy consumption on a per square foot basis and they also focus on indoor environmental quality. However, the co-benefits to health through reductions in energy and concomitant reductions in air pollution have not been examined.We calculated year by year LEED (Leadership in Energy and Environmental Design) certification rates in six countries (the United States, China, India, Brazil, Germany, and Turkey) and then used data from the Green Building Information Gateway (GBIG) to estimate energy savings in each country each year. Of the green building rating schemes, LEED accounts for 32% of green-certified floor space and publically reports energy efficiency data. We employed Harvard’s Co-BE Calculator to determine pollutant emissions reductions by country accounting for transient energy mixes and baseline energy use intensities. Co-BE applies the social cost of carbon and the social cost of atmospheric release to translate these reductions into health benefits. Based on modeled energy use, LEED-certified buildings saved $7.5B in energy costs and averted 33MT of CO2, 51 kt of SO2, 38 kt of NOx, and 10 kt of PM2.5 from entering the atmosphere, which amounts to $5.8B (lower limit = $2.3B, upper limit = $9.1B) in climate and health co-benefits from 2000 to 2016 in the six countries investigated. The U.S. health benefits derive from avoiding an estimated 172-405 premature deaths, 171 hospital admissions, 11,000 asthma exacerbations, 54,000 respiratory symptoms, 21,000 lost days of work, and 16,000 lost days of school. Because the climate and health benefits are nearly equivalent to the energy savings for green buildings in the United States, and up to 10 times higher in developing countries, they provide an important and previously unquantified societal value. Future analyses should consider these co-benefits when weighing policy decisions around energy-efficient buildings.

Concepts: Energy development, Limit superior and limit inferior, Pollution, Air pollution, Sustainable design, Natural building, Green building, Leadership in Energy and Environmental Design


Consumption of inorganic arsenic in drinking water at high levels has been associated with chronic diseases. Research groups have estimated historic exposure using databases and models of arsenic in drinking water supplies, along with participant residential histories. Urinary arsenic species are an established biomarker of recent exposure; we compare arsenic concentrations in historically collected urine samples with predicted estimates of arsenic exposure. Using a cohort of 462 subjects with at least one urine sample collected from 1984-1992 and an arsenic exposure estimate through drinking water at the time of the urine sample, individual exposure estimates were compared with speciated urine arsenic (UAs) concentrations using correlation and multiple regression analyses. Urine inorganic arsenic (UIAs) concentrations (trivalent arsenic, pentavalent arsenic, monomethylarsonic acid, dimethylarsonic acid) were best predicted by residential water arsenic concentrations (R(2)=0.3688), compared with metrics including water consumption (R(2)=0.2038) or water concentrations at employment locations (R(2)=0.2331). UIAs concentrations showed similar correlation when stratified by whether the arsenic concentration was predicted or measured. Residential water arsenic concentrations, independent of water intake or water concentrations at places of employment, best explain the variability in UIAs concentrations, suggesting historical reconstruction of arsenic exposure that accounts for space-time variability and water concentrations may serve as a proxy for exposure.Journal of Exposure Science and Environmental Epidemiology advance online publication, 27 February 2013; doi:10.1038/jes.2013.8.

Concepts: Urine, Drinking water, Water crisis, Desalination, Water, Water supply network, History, Regression analysis