Discover the most talked about and latest scientific content & concepts.

Journal: Foods (Basel, Switzerland)


Turmeric, a spice that has long been recognized for its medicinal properties, has received interest from both the medical/scientific world and from culinary enthusiasts, as it is the major source of the polyphenol curcumin. It aids in the management of oxidative and inflammatory conditions, metabolic syndrome, arthritis, anxiety, and hyperlipidemia. It may also help in the management of exercise-induced inflammation and muscle soreness, thus enhancing recovery and performance in active people. In addition, a relatively low dose of the complex can provide health benefits for people that do not have diagnosed health conditions. Most of these benefits can be attributed to its antioxidant and anti-inflammatory effects. Ingesting curcumin by itself does not lead to the associated health benefits due to its poor bioavailability, which appears to be primarily due to poor absorption, rapid metabolism, and rapid elimination. There are several components that can increase bioavailability. For example, piperine is the major active component of black pepper and, when combined in a complex with curcumin, has been shown to increase bioavailability by 2000%. Curcumin combined with enhancing agents provides multiple health benefits. The purpose of this review is to provide a brief overview of the plethora of research regarding the health benefits of curcumin.

Concepts: Inflammation, Health care, Medicine, Metabolism, Nutrition, Antioxidant, Anti-inflammatory, Black pepper


The dramatic rise in the use of smartphones, tablets, and laptop computers over the past decade has raised concerns about potentially deleterious health effects of increased “screen time” (ST) and associated short-wavelength (blue) light exposure. We determined baseline associations and effects of 6 months' supplementation with the macular carotenoids (MC) lutein, zeaxanthin, and mesozeaxanthin on the blue-absorbing macular pigment (MP) and measures of sleep quality, visual performance, and physical indicators of excessive ST. Forty-eight healthy young adults with at least 6 h of daily near-field ST exposure participated in this placebo-controlled trial. Visual performance measures included contrast sensitivity, critical flicker fusion, disability glare, and photostress recovery. Physical indicators of excessive screen time and sleep quality were assessed via questionnaire. MP optical density (MPOD) was assessed via heterochromatic flicker photometry. At baseline, MPOD was correlated significantly with all visual performance measures (p < 0.05 for all). MC supplementation (24 mg daily) yielded significant improvement in MPOD, overall sleep quality, headache frequency, eye strain, eye fatigue, and all visual performance measures, versus placebo (p < 0.05 for all). Increased MPOD significantly improves visual performance and, in turn, improves several undesirable physical outcomes associated with excessive ST. The improvement in sleep quality was not directly related to increases in MPOD, and may be due to systemic reduction in oxidative stress and inflammation.

Concepts: Photosynthesis, Antioxidant, Carotenoid, Laptop, Zeaxanthin, Lutein, Xanthophyll, Shutter speed


Cardiovascular diseases (CVD) remain a major cause of death and morbidity globally and diet plays a crucial role in the disease prevention and pathology. The negative perception of dairy fats stems from the effort to reduce dietary saturated fatty acid (SFA) intake due to their association with increased cholesterol levels upon consumption and the increased risk of CVD development. Institutions that set dietary guidelines have approached dairy products with negative bias and used poor scientific data in the past. As a result, the consumption of dairy products was considered detrimental to our cardiovascular health. In western societies, dietary trends indicate that generally there is a reduction of full-fat dairy product consumption and increased low-fat dairy consumption. However, recent research and meta-analyses have demonstrated the benefits of full-fat dairy consumption, based on higher bioavailability of high-value nutrients and anti-inflammatory properties. In this review, the relationship between dairy consumption, cardiometabolic risk factors and the incidence of cardiovascular diseases are discussed. Functional dairy foods and the health implications of dairy alternatives are also considered. In general, evidence suggests that milk has a neutral effect on cardiovascular outcomes but fermented dairy products, such as yoghurt,kefirand cheese may have a positive or neutral effect. Particular focus is placed on the effects of the lipid content on cardiovascular health.

Concepts: Epidemiology, Nutrition, Cardiovascular disease, Milk, Fat, Butter, Pasteurization, Dairy product


Chemosensory sensitivity has great variation between individuals. This variation complicates the chemosensory diagnostics, as well as the creation of a meal with universally high hedonic value. To ensure accurate characterization of chemosensory function, a common rule of thumb is to avoid food/beverages one hour before chemosensory testing. However, the scientific foundation of this time of fast remains unclear. Furthermore, the role of coffee on immediate chemosensitivity is not known and may have implications for optimization of gastronomy and hedonia. The aim of this study is to investigate the modularity effects of coffee consumption on immediate gustatory and olfactory sensitivity. We included 155 participants. By applying tests for olfactory and gustatory sensitivity before and after coffee intake, we found no changes in olfactory sensitivity, but significantly altered sensitivity for some basic tastants. We repeated our experimental paradigm using decaffeinated coffee and found similar results. Our results demonstrate that coffee (regular and decaffeinated) alters the subsequent perception of taste, specifically by increasing the sensitivity to sweet and decreasing the sensitivity to bitter. Our findings provide the first evidence of how coffee impacts short-term taste sensitivity and consequently the way we sense and perceive food following coffee intake-an important insight in the context of gastronomy, as well as in chemosensory testing procedures.


Current scientific evidence points to a neutral or positive effect of dairy fats intake on cardiovascular health. After years of controversy, with many guidelines recommending a reduced intake of dairy products, and preferably low or nonfat dairy foods, current knowledge points to the more appropriate recommendation of moderate consumption of full-fat dairy foods within a healthy lifestyle. Fermented dairy products seem to be the best option as a source of nutrients and cardiovascular health benefits. Previous recommendations were based on cholesterol, saturated fat, and caloric contents, in dairy fat, and their potential impact on serum cholesterol, fasting sugar levels, and blood pressure. However, experimental data point to a more complex scenario in which other actors may play major roles: calcium, bioactive lipids and peptides, and even the food-matrix effect from the dairy food side, and human genetics and environmental factors all impact dairy food-related health issues. Furthermore, cardiovascular health does not rely solely on serum cholesterol levels and blood pressure but also on inflammatory biomarkers. At present, little is known on the true mechanisms underlying the cardioprotective mechanism of dairy fats, and further research in needed to elucidate them.


Coloring concentrates of carotenoid-rich plant materials are currently used in the food industry to meet the consumer’s demand for natural substitutes for food colorants. The production of shelf-stable powders of such concentrates comes with particular challenges linked to the sensitivity of the active component towards oxidation and the complexity of the composition and microstructure of such concentrates. In this study, different strategies for the stabilization of crystalline carotenoids as part of a natural carrot concentrate matrix during drying and storage were investigated. The evaluated approaches included spray- and freeze drying, the addition of functional additives, and oxygen free storage. Functional additives comprised carrier material (maltodextrin, gum Arabic, and octenyl succinic anhydride (OSA)-modified starch) and antioxidants (mixed tocopherols, sodium ascorbate). Degradation and changes in the physical state of the carotenoid crystals were monitored during processing and storage. Carotenoid losses during processing were low (>5%) irrespective of the used technology and additives. During storage, samples stored in nitrogen showed the highest carotenoid retention (97-100%). The carotenoid retention in powders stored with air access varied between 12.3% ± 2.1% and 66.0% ± 5.4%, having been affected by the particle structure as well as the formulation components used. The comparative evaluation of the tested strategies allows a more targeted design of processing and formulation of functional carrot concentrate powders.


Glyphosate-tolerant (GT) soybeans dominate the world soybean market. These plants have triggered increased use of, as well as increased residues of, glyphosate in soybean products. We present data that show farmers have doubled their glyphosate applications per season (from two to four) and that residues of late season spraying of glyphosate (at full bloom of the plant) result in much higher residues in the harvested plants and products. GT soybeans produced on commercial farms in the USA, Brazil and Argentina accumulate in total an estimated 2500-10,000 metric tonnes of glyphosate per year, which enter global food chains. We also review studies that have compared the quality of GT soybeans with conventional and organic soybeans. Feeding studies in Daphnia magna have shown dose-related adverse effects (mortality, reduced fecundity and delayed reproduction) of glyphosate residues in soybeans, even at glyphosate concentrations below allowed residue levels. We argue that GT soybeans need to be tested in fully representative and realistic contexts. However, the current risk assessment system has only required and received data from field trials with beans that were sprayed with much lower doses of glyphosate as compared to contemporary commercial farms. This has left knowledge gaps and a potentially serious underestimation of health risks to consumers.


The negative impacts of meat consumption for animals, the environment, and human health are more pressing than ever. Although some evidence points to an ongoing reduction in meat consumption in Europe, consumers are overall unwilling to cut their meat consumption in a substantial way. The present study investigates dietary identities and perceptions of cultured meat in nationally representative samples from Germany (n = 1000) and France (n = 1000). Participants were recruited through an Ipsos panel to answer an online survey, which included questions about their current and intended consumption of conventional meat, as well as questions about their opinions of cultured meat. We find that, whilst rates of vegetarianism were relatively low in France, unrestricted meat-eaters were a minority in Germany, and concern for animal welfare was the most common reason given for meat reduction. Substantial markets for cultured meat exist in both countries, although German consumers are significantly more open to the concept than the French. Strikingly, cultured meat acceptance is significantly higher amongst agricultural and meat workers, indicating that those who are closest to existing meat production methods are most likely to prefer alternatives. We found some evidence that pro-cultured meat messages, which focus on antibiotic resistance and food safety, are significantly more persuasive than those that focus on animals or the environment. Furthermore, consumers project that they would be significantly more likely to consume cultured meat that does not contain genetically modified ingredients. Overall, we find substantially large markets for cultured meat in Germany and France, and identify some potential ways to further increase acceptance in these markets. We conclude by highlighting the most promising markets for cultured meat, and highlighting a lack of antibiotics as a potentially persuasive message about cultured meat.


Discussion regarding the regulatory status of genome-edited crops has focused on precision of editing and on doubts regarding the feasibility of analytical monitoring compliant with existing GMO regulations. Effective detection methods are important, both for regulatory enforcement and traceability in case of biosafety, environmental or socio-economic impacts. Here, we approach the analysis question for the first time in the laboratory and report the successful development of a quantitative PCR detection method for the first commercialized genome-edited crop, a canola with a single base pair edit conferring herbicide tolerance. The method is highly sensitive and specific (quantification limit, 0.05%), compatible with the standards of practice, equipment and expertise typical in GMO laboratories, and readily integrable into their analytical workflows, including use of the matrix approach. The method, validated by an independent laboratory, meets all legal requirements for GMO analytical methods in jurisdictions such as the EU, is consistent with ISO17025 accreditation standards and has been placed in the public domain. Having developed a qPCR method for the most challenging class of genome edits, single-nucleotide variants, this research suggests that qPCR-based method development may be applicable to virtually any genome-edited organism. This advance resolves doubts regarding the feasibility of extending the regulatory approach currently employed for recombinant DNA-based GMOs to genome-edited organisms.


Plant-based drinks (PBDs) as alternatives to milk is a fast-growing market in much of the western world, with the demand increasing every year. However, most PBDs from a single plant ingredient do not have an amino acid profile that matches human needs. Therefore, this study set out to combine plant ingredients to achieve a more balanced amino acid profile of novel plant drinks, by combining a high content of oat with the pulses pea (Pisum sativum) and lentil (Lens culinaris) in a solution. After removal of the sediment, the resulting plant drinks were composed of what could be kept in suspension. The amino acid and protein composition of the plant drinks were investigated with capillary electrophoresis, to identify the amino acids, and SDS-PAGE to assess the proteins present. The amino acid profile was compared against recommended daily intake (RDI). It was determined that the plant drinks with only oat and lentil did not have a strong amino acid profile, likely due to the higher pH of the lentil concentrate affecting which proteins could be kept in solution. Plant drinks with a combination of both lentil and pea, or only pea, added to the oat drink had an improved concentration of the amino acids that were otherwise in the low end compared to RDI. This includes a high content of phenylalanine, leucine and threonine, as well as a moderate amount of isoleucine, valine and methionine, and a contribution of histidine and lysine. An assessment of stability and sensory parameters was also conducted, concluding there was an advantage of combining oat with a legume, especially pea.