Discover the most talked about and latest scientific content & concepts.

Journal: CBE life sciences education


The National Institutes of Health (NIH) is committed to attracting, developing, and supporting the best scientists from all groups as an integral part of excellence in training. Biomedical research workforce diversity, capitalizing on the full spectrum of skills, talents, and viewpoints, is essential for solving complex human health challenges. Over the past few decades, the biomedical research workforce has benefited from NIH programs aimed at enhancing diversity. However, there is considerable room for improvement, particularly at the level of independent scientists and within scientific leadership. We provide a rationale and specific opportunities to develop and sustain a diverse biomedical research workforce through interventions that promote the successful transitions to different stages on the path toward completion of training and entry into the biomedical workforce.

Concepts: Health care, Health, Human, Science, Skill, Medical research, Problem solving, National Institutes of Health


Members of the Joint Working Group on Improving Underrepresented Minorities (URMs) Persistence in Science, Technology, Engineering, and Mathematics (STEM)-convened by the National Institute of General Medical Sciences and the Howard Hughes Medical Institute-review current data and propose deliberation about why the academic “pathways” leak more for URM than white or Asian STEM students. They suggest expanding to include a stronger focus on the institutional barriers that need to be removed and the types of interventions that “lift” students' interests, commitment, and ability to persist in STEM fields. Using Kurt Lewin’s planned approach to change, the committee describes five recommendations to increase URM persistence in STEM at the undergraduate level. These recommendations capitalize on known successes, recognize the need for accountability, and are framed to facilitate greater progress in the future. The impact of these recommendations rests upon enacting the first recommendation: to track successes and failures at the institutional level and collect data that help explain the existing trends.

Concepts: Medicine, Science, Engineering, Minority group, Howard Hughes, Howard Hughes Medical Institute, Hughes Aircraft, Hughes Helicopters


Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments (“Scientist Spotlights”) that featured counterstereotypical examples of scientists in an introductory biology class at a diverse community college. Scientist Spotlights additionally served as tools for content coverage, as scientists were selected to match topics covered each week. We analyzed beginning- and end-of-course essays completed by students during each of five courses with Scientist Spotlights and two courses with equivalent homework assignments that lacked connections to the stories of diverse scientists. Students completing Scientist Spotlights shifted toward counterstereotypical descriptions of scientists and conveyed an enhanced ability to personally relate to scientists following the intervention. Longitudinal data suggested these shifts were maintained 6 months after the completion of the course. Analyses further uncovered correlations between these shifts, interest in science, and course grades. As Scientist Spotlights require very little class time and complement existing curricula, they represent a promising tool for enhancing science identity, shifting stereotypes, and connecting content to issues of equity and diversity in a broad range of STEM classrooms.

Concepts: Sociology, Science, Social psychology, Scientist, Pseudoscience, Stereotype, Stereotypes, Stereotype threat


The Course-Based Undergraduate Research Experiences Network (CUREnet) was initiated in 2012 with funding from the National Science Foundation program for Research Coordination Networks in Undergraduate Biology Education. CUREnet aims to address topics, problems, and opportunities inherent to integrating research experiences into undergraduate courses. During CUREnet meetings and discussions, it became apparent that there is need for a clear definition of what constitutes a CURE and systematic exploration of what makes CUREs meaningful in terms of student learning. Thus, we assembled a small working group of people with expertise in CURE instruction and assessment to: 1) draft an operational definition of a CURE, with the aim of defining what makes a laboratory course or project a “research experience”; 2) summarize research on CUREs, as well as findings from studies of undergraduate research internships that would be useful for thinking about how students are influenced by participating in CUREs; and 3) identify areas of greatest need with respect to CURE assessment, and directions for future research on and evaluation of CUREs. This report summarizes the outcomes and recommendations of this meeting.

Concepts: Psychology, Definition, Experience, Philosophy of science, Expert, National Science Foundation, Conceptual definition


Blacks, Hispanics, and American Indians/Alaskan Natives are underrepresented in science and engineering fields. A comparison of race-ethnic differences at key transition points was undertaken to better inform education policy. National data on high school graduation, college enrollment, choice of major, college graduation, graduate school enrollment, and doctoral degrees were used to quantify the degree of underrepresentation at each level of education and the rate of transition to the next stage. Disparities are found at every level, and their impact is cumulative. For the most part, differences in graduation rates, rather than differential matriculation rates, make the largest contribution to the underrepresentation. The size, scope, and persistence of the disparities suggest that small-scale, narrowly targeted remediation will be insufficient.

Concepts: High school, Stage, Academic degree, College, School, Graduate school, Graduation, Postgraduate education


Current instructional reforms in undergraduate science, technology, engineering, and mathematics (STEM) courses have focused on enhancing adoption of evidence-based instructional practices among STEM faculty members. These practices have been empirically demonstrated to enhance student learning and attitudes. However, research indicates that instructors often adapt rather than adopt practices, unknowingly compromising their effectiveness. Thus, there is a need to raise awareness of the research-based implementation of these practices, develop fidelity of implementation protocols to understand adaptations being made, and ultimately characterize the true impact of reform efforts based on these practices. Peer instruction (PI) is an example of an evidence-based instructional practice that consists of asking students conceptual questions during class time and collecting their answers via clickers or response cards. Extensive research has been conducted by physics and biology education researchers to evaluate the effectiveness of this practice and to better understand the intricacies of its implementation. PI has also been investigated in other disciplines, such as chemistry and computer science. This article reviews and summarizes these various bodies of research and provides instructors and researchers with a research-based model for the effective implementation of PI. Limitations of current studies and recommendations for future empirical inquiries are also provided.

Concepts: Scientific method, Mathematics, Science, Research, Empirical, Awareness, Empirical research, Research and development


Private and public policies are increasingly aimed at supporting efforts to broaden participation of a diverse body of students in higher education. Unfortunately, this increase in student diversity does not always occur alongside changes in institutional culture. Unexamined biases in institutional culture can prevent diverse students from thriving and persisting in science, technology, engineering, and mathematics (STEM) fields. Given the daily personal interactions that faculty have with students, we suggest that individual educators have the opportunity, and responsibility, to improve the retention and persistence of diverse students. However, in our experience, faculty professional development programs often limit discussions of diversity to “comfortable” topics (such as learning styles) and miss opportunities to explore deeper issues related to faculty privilege, implicit bias, and cues for stereotype threat that we all bring to the classroom. In this essay, we present a set of social science concepts that we can extend to our STEM courses to inform our efforts at inclusive excellence. We have recommended strategies for meaningful reflection and professional development with respect to diversity and inclusion, and aim to empower faculty to be change agents in their classrooms as a means to broadening participation in STEM fields.

Concepts: Mathematics, Education, Sociology, University, Social sciences, Higher education, Student, Classroom


Recent reform efforts in undergraduate biology have recommended transforming course exams to test at more cognitively challenging levels, which may mean including more cognitively challenging and more constructed-response questions on assessments. However, changing the characteristics of exams could result in bias against historically underserved groups. In this study, we examined whether and to what extent the characteristics of instructor-generated tests impact the exam performance of male and female and middle/high- and low-socioeconomic status (SES) students enrolled in introductory biology courses. We collected exam scores for 4810 students from 87 unique exams taken across 3 yr of the introductory biology series at a large research university. We determined the median Bloom’s level and the percentage of constructed-response questions for each exam. Despite controlling for prior academic ability in our models, we found that males and middle/high-SES students were disproportionately favored as the Bloom’s level of exams increased. Additionally, middle/high-SES students were favored as the proportion of constructed-response questions on exams increased. Given that we controlled for prior academic ability, our findings do not likely reflect differences in academic ability level. We discuss possible explanations for our findings and how they might impact how we assess our students.

Concepts: Male, Female, Gender, Assessment, Sex, Educational psychology, University, Test


A national sample of PhD-trained scientists completed training, accepted subsequent employment in academic and nonacademic positions, and were queried about their previous graduate training and current employment. Respondents indicated factors contributing to their employment decision (e.g., working conditions, salary, job security). The data indicate the relative importance of deciding factors influencing career choice, controlling for gender, initial interest in faculty careers, and number of postgraduate publications. Among both well-represented (WR; n = 3444) and underrepresented minority (URM; n = 225) respondents, faculty career choice was positively associated with desire for autonomy and partner opportunity and negatively associated with desire for leadership opportunity. Differences between groups in reasons endorsed included: variety, prestige, salary, family influence, and faculty advisor influence. Furthermore, endorsement of faculty advisor or other mentor influence and family or peer influence were surprisingly rare across groups, suggesting that formal and informal support networks could provide a missed opportunity to provide support for trainees who want to stay in faculty career paths. Reasons requiring alteration of misperceptions (e.g., limited leadership opportunity for faculty) must be distinguished from reasons requiring removal of actual barriers. Further investigation into factors that affect PhDs' career decisions can help elucidate why URM candidates are disproportionately exiting the academy.

Concepts: Academia, Employment, Academic degree, Career, Social influence, Doctor of Philosophy, Academy, Formal


Evolution is a core concept of biology, and yet many college biology students do not accept evolution because of their religious beliefs. However, we do not currently know how instructors perceive their role in helping students accept evolution or how they address the perceived conflict between religion and evolution when they teach evolution. This study explores instructor practices and beliefs related to mitigating students' perceived conflict between religion and evolution. Interviews with 32 instructors revealed that many instructors do not believe it is their goal to help students accept evolution and that most instructors do not address the perceived conflict between religion and evolution. Instructors cited many barriers to discussing religion in the context of evolution in their classes, most notably the instructors' own personal beliefs that religion and evolution may be incompatible. These data are exploratory and are intended to stimulate a series of questions about how we as college biology instructors teach evolution.

Concepts: Evolution, Life, Truth, Faith, Education, Perception, Concept, Religion