Discover the most talked about and latest scientific content & concepts.

Journal: BMC evolutionary biology


Despite its short-term costs, behaviour that appears altruistic can increase an individual’s inclusive fitness by earning direct (selfish) and/or indirect (kin-selected) benefits. An evolved preference for other-regarding or helping behaviour in potential mates has been proposed as an additional mechanism by which these behaviours can yield direct fitness benefits in humans.

Concepts: Motivation, Evolutionary psychology, Evolutionary biology, Richard Dawkins, Inclusive fitness, The Selfish Gene, Altruism, Kin selection


Recent studies suggest there is a relationship between intervertebral disc herniation and vertebral shape. The nature of this relationship is unclear, however. Humans are more commonly afflicted with spinal disease than are non-human primates and one suggested explanation for this is the stress placed on the spine by bipedalism. With this in mind, we carried out a study of human, chimpanzee, and orangutan vertebrae to examine the links between vertebral shape, locomotion, and Schmorl’s nodes, which are bony indicators of vertical intervertebral disc herniation. We tested the hypothesis that vertical disc herniation preferentially affects individuals with vertebrae that are towards the ancestral end of the range of shape variation within Homo sapiens and therefore are less well adapted for bipedalism.

Concepts: Chimpanzee, Primate, Spinal disc herniation, Human evolution, Hominidae, Vertebral column, Intervertebral disc, Human


On August 9th 2012, we published an original research article in Scientific Reports, concluding that artificial radionuclides released from the Fukushima Dai-ichi Nuclear Power Plant exerted genetically and physiologically adverse effects on the pale grass blue butterfly Zizeeria maha in the Fukushima area. Immediately following publication, many questions and comments were generated from all over the world. Here, we have clarified points made in the original paper and answered questions posed by the readers.

Concepts: Academic publishing, Nuclear power, Nuclear safety, Lycaenidae, Chernobyl disaster, Three Mile Island accident, Publishing, Research


Lepidosauria (lizards, snakes, tuatara) is a globally distributed and ecologically important group of over 9,000 reptile species. The earliest fossil records are currently restricted to the Late Triassic and often dated to 227 million years ago (Mya). As these early records include taxa that are relatively derived in their morphology (e.g. Brachyrhinodon), an earlier unknown history of Lepidosauria is implied. However, molecular age estimates for Lepidosauria have been problematic; dates for the most recent common ancestor of all lepidosaurs range between approximately 226 and 289 Mya whereas estimates for crown-group Squamata (lizards and snakes) vary more dramatically: 179 to 294 Mya. This uncertainty restricts inferences regarding the patterns of diversification and evolution of Lepidosauria as a whole.

Concepts: Lizard, Lepidosauria, Evolution, Squamata, Dinosaur, Sphenodontia, Tuatara, Reptile


The highly derived morphology and astounding diversity of snakes has long inspired debate regarding the ecological and evolutionary origin of both the snake total-group (Pan-Serpentes) and crown snakes (Serpentes). Although speculation abounds on the ecology, behavior, and provenance of the earliest snakes, a rigorous, clade-wide analysis of snake origins has yet to be attempted, in part due to a dearth of adequate paleontological data on early stem snakes. Here, we present the first comprehensive analytical reconstruction of the ancestor of crown snakes and the ancestor of the snake total-group, as inferred using multiple methods of ancestral state reconstruction. We use a combined-data approach that includes new information from the fossil record on extinct crown snakes, new data on the anatomy of the stem snakes Najash rionegrina, Dinilysia patagonica, and Coniophis precedens, and a deeper understanding of the distribution of phenotypic apomorphies among the major clades of fossil and Recent snakes. Additionally, we infer time-calibrated phylogenies using both new ‘tip-dating’ and traditional node-based approaches, providing new insights on temporal patterns in the early evolutionary history of snakes.

Concepts: Biology, Najash, Fossil, Phylogenetics, Paleontology, Dinosaur, Snake, Evolution


While our understanding of the genetic basis of convergent evolution has improved there are still many uncertainties. Here we investigate the repeated evolution of dark colouration (melanism) in eastern fox squirrels (Sciurus niger; hereafter “fox squirrels”) and eastern gray squirrels (S. carolinensis; hereafter “gray squirrels”).


BACKGROUND: Beneficial mutations play an essential role in bacterial adaptation, yet little is known about their fitness effects across genetic backgrounds and environments. One prominent example of bacterial adaptation is antibiotic resistance. Until recently, the paradigm has been that antibiotic resistance is selected by the presence of antibiotics because resistant mutations confer fitness costs in antibiotic free environments. In this study we show that it is not always the case, documenting the selection and fixation of resistant mutations in populations of Escherichia coli B that had never been exposed to antibiotics but instead evolved for 2000 generations at high temperature (42.2[degree sign]C). RESULTS: We found parallel mutations within the rpoB gene encoding the beta subunit of RNA polymerase. These amino acid substitutions conferred different levels of rifampicin resistance. The resistant mutations typically appeared, and were fixed, early in the evolution experiment. We confirmed the high advantage of these mutations at 42.2[degree sign]C in glucose-limited medium. However, the rpoB mutations had different fitness effects across three genetic backgrounds and six environments. CONCLUSIONS: We describe resistance mutations that are not necessarily costly in the absence of antibiotics or compensatory mutations but are highly beneficial at high temperature and low glucose. Their fitness effects depend on the environment and the genetic background, providing glimpses into the prevalence of epistasis and pleiotropy.

Concepts: Virus, Genetics, Escherichia coli, Evolution, Antibiotic resistance, Natural selection, Bacteria, Gene


BACKGROUND: Males in some species of the genus Xiphophorus, small freshwater fishes from Meso-America, have an extended caudal fin, or sword – hence their common name “swordtails”. Longer swords are preferred by females from both sworded and – surprisingly also, non-sworded (platyfish) species that belong to the same genus. Swordtails have been studied widely as models in research on sexual selection. Specifically, the pre-existing bias hypothesis was interpreted to best explain the observed bias of females in presumed ancestral lineages of swordless species that show a preference for assumed derived males with swords over their conspecific swordless males. However, many of the phylogenetic relationships within this genus still remained unresolved. Here we construct a comprehensive molecular phylogeny of all 26 known Xiphophorus species, including the four recently described species (X. kallmani, X. mayae, X. mixei and X. monticolus). We use two mitochondrial and six new nuclear markers in an effort to increase the understanding of the evolutionary relationships among the species in this genus. Based on the phylogeny, the evolutionary history and character state evolution of the sword was reconstructed and found to have originated in the common ancestral lineage of the genus Xiphophorus and that it was lost again secondarily. RESULTS: We estimated the evolutionary relationships among all known species of the genus Xiphophorus based on the largest set of DNA markers so far. The phylogeny indicates that one of the newly described swordtail species, Xiphophorus monticolus, is likely to have arisen through hybridization since it is placed with the southern platyfish in the mitochondrial phylogeny, but with the southern swordtails in the nuclear phylogeny. Such discordance between these two types of markers is a strong indication for a hybrid origin. Additionally, by using a maximum likelihood approach the possession of the sexually selected sword trait is shown to be the most likely ancestral state for the genus Xiphophorus. Further, we provide a well supported estimation of the phylogenetic relationships between the previously unresolved northern swordtail groups. CONCLUSIONS: This comprehensive molecular phylogeny of the entire genus Xiphophorus provides evidence that a second swordtail species, X. monticolus, arose through hybridization. Previously, we demonstrated that X. clemenciae, another southern swordtail species, arose via hybridization. These findings highlight the potential key role of hybridization in the evolution of this genus and suggest the need for further investigations into how hybridization contributes to speciation more generally.

Concepts: Species, Biology, Phylogenetics, Phylogenetic tree, Evolution, Green swordtail, Southern platyfish, Xiphophorus


BACKGROUND: Cnidaria (corals, sea anemones, hydroids, jellyfish) is a phylum of relatively simple aquatic animals characterized by the presence of the cnidocyst: a cell containing a giant capsular organelle with an eversible tubule (cnida). Species within Cnidaria have life cycles that involve one or both of the two distinct body forms, a typically benthic polyp, which may or may not be colonial, and a typically pelagic mostly solitary medusa. The currently accepted taxonomic scheme subdivides Cnidaria into two main assemblages: Anthozoa (Hexacorallia + Octocorallia) – cnidarians with a reproductive polyp and the absence of a medusa stage – and Medusozoa (Cubozoa, Hydrozoa, Scyphozoa, Staurozoa) – cnidarians that usually possess a reproductive medusa stage. Hypothesized relationships among these taxa greatly impact interpretations of cnidarian character evolution. RESULTS: We expanded the sampling of cnidarian mitochondrial genomes, particularly from Medusozoa, to reevaluate phylogenetic relationships within Cnidaria. Our phylogenetic analyses based on a mitochogenomic dataset support many prior hypotheses, including monophyly of Hexacorallia, Octocorallia, Medusozoa, Cubozoa, Staurozoa, Hydrozoa, Carybdeida, Chirodropida, and Hydroidolina, but reject the monophyly of Anthozoa, indicating that the Octocorallia + Medusozoa relationship is not the result of sampling bias, as proposed earlier. Further, our analyses contradict Scyphozoa [Discomedusae + Coronatae], Acraspeda [Cubozoa + Scyphozoa], as well as the hypothesis that Staurozoa is the sister group to all the other medusozoans. CONCLUSIONS: Cnidarian mitochondrial genomic data contain phylogenetic signal informative for understanding the evolutionary history of this phylum. Mitogenome-based phylogenies, which reject the monophyly of Anthozoa, provide further evidence for the polyp-first hypothesis. By rejecting the traditional Acraspeda and Scyphozoa hypotheses, these analyses suggest that the shared morphological characters in these groups are plesiomorphies, originated in the branch leading to Medusozoa. The expansion of mitogenomic data along with improvements in phylogenetic inference methods and use of additional nuclear markers will further enhance our understanding of the phylogenetic relationships and character evolution within Cnidaria.

Concepts: Medusa, Coral, Anthozoa, Polyp, Hydrozoa, Sea anemone, Jellyfish, Cnidaria


BACKGROUND: Sexual system is a key factor affecting the genetic diversity, population structure, genome structure and the evolutionary potential of species. The sexual system androdioecy – where males and hermaphrodites coexist in populations – is extremely rare, yet is found in three crustacean groups, barnacles, a genus of clam shrimps Eulimnadia, and in the order Notostraca, the tadpole shrimps. In the ancient crustacean order Notostraca, high morphological conservatism contrasts with a wide diversity of sexual systems, including androdioecy. An understanding of the evolution of sexual systems in this group has been hampered by poor phylogenetic resolution and confounded by the widespread occurrence of cryptic species. Here we use a multigene supermatrix for 30 taxa to produce a comprehensive phylogenetic reconstruction of Notostraca. Based on this phylogenetic reconstruction we use character mapping techniques to investigate the evolution of sexual systems. We also tested the hypothesis that reproductive assurance has driven the evolution of androdioecy in Notostraca. RESULTS: Character mapping analysis showed that sexual system is an extremely flexible trait within Notostraca, with repeated shifts between gonochorism and androdioecy, the latter having evolved a minimum of five times. In agreement with the reproductive assurance hypothesis androdioecious notostracans are found at significantly higher latitudes than gonochoric ones indicating that post glacial re-colonisation may have selected for the higher colonisation ability conferred by androdioecy. CONCLUSIONS: In contrast to their conserved morphology, sexual system in Notostraca is highly labile and the rare reproductive mode androdioecy has evolved repeatedly within the order. Furthermore, we conclude that this lability of sexual system has been maintained for at least 250 million years and may have contributed to the long term evolutionary persistence of Notostraca. Our results further our understanding of the evolution of androdioecy and indicate that reproductive assurance is a recurrent theme involved in the evolution of this sexual system.

Concepts: Hermaphrodite, Notostraca, Organism, Branchiopoda, Biology, Evolution, Crustacean, Species