SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: BMC cell biology

215

Altered expression of mRNA splicing factors occurs with ageing in vivo and is thought to be an ageing mechanism. The accumulation of senescent cells also occurs in vivo with advancing age and causes much degenerative age-related pathology. However, the relationship between these two processes is opaque. Accordingly we developed a novel panel of small molecules based on resveratrol, previously suggested to alter mRNA splicing, to determine whether altered splicing factor expression had potential to influence features of replicative senescence.

Concepts: DNA, Gene expression, Cancer, Death, Senescence, Radical, Gerontology, Ageing

148

Gap junctions facilitate exchange of small molecules between adjacent cells, serving a crucial function for the maintenance of cellular homeostasis. Mutations in connexins, the basic unit of gap junctions, are associated with several human hereditary disorders. For example, mutations in connexin26 (Cx26) cause both non-syndromic deafness and syndromic deafness associated with skin abnormalities such as keratitis-ichthyosis-deafness (KID) syndrome. These mutations can alter the formation and function of gap junction channels through different mechanisms, and in turn interfere with various cellular processes leading to distinct disorders. The KID associated Cx26 mutations were mostly shown to result in elevated hemichannel activities. However, the effects of these aberrant hemichannels on cellular processes are recently being deciphered. Here, we assessed the effect of two Cx26 mutations associated with KID syndrome, Cx26I30N and D50Y, on protein biosynthesis and channel function in N2A and HeLa cells.

Concepts: DNA, Protein, Metabolism, Cell culture, Cell signaling, Gap junction, Connexin, Pannexin

4

BACKGROUND: The present review summarizes current knowledge about microparticles (MPs) and provides a systematic overview of last 20 years of research on circulating MPs, with particular focus on their clinical relevance. RESULTS: MPs are a heterogeneous population of cell-derived vesicles, with sizes ranging between 50 and 1000 nm. MPs are capable of transferring peptides, proteins, lipid components, microRNA, mRNA, and DNA from one cell to another without direct cell-to-cell contact. Growing evidence suggests that MPs present in peripheral blood and body fluids contribute to the development and progression of cancer, and are of pathophysiological relevance for autoimmune, inflammatory, infectious, cardiovascular, hematological, and other diseases. MPs have large diagnostic potential as biomarkers; however, due to current technological limitations in purification of MPs and an absence of standardized methods of MP detection, challenges remain in validating the potential of MPs as a non-invasive and early diagnostic platform. CONCLUSIONS: Improvements in the effective deciphering of MP molecular signatures will be critical not only for diagnostics but also for the evaluation of treatment regimens and predicting disease outcomes.

Concepts: DNA, Protein, Infectious disease, Blood, RNA, Messenger RNA, Future, Circle

3

Environmental factors are important for stem cell lineage specification, and increasing evidence indicates that the nanoscale geometry/topography of the extracellular matrix (ECM) directs stem cell fate. Recently, many three-dimensional (3D) biomimetic nanofibrous scaffolds resembling many characteristics of the native ECM have been used in stem cell-based myocardial tissue engineering. However, the biophysical role and underlying mechanism of 3D nanofibrous scaffolds in cardiomyocyte differentiation of induced pluripotent stem cells (iPSCs) remain unclear.

Concepts: Extracellular matrix, Developmental biology, Stem cell, Stem cells, Cell biology, Embryonic stem cell, Induced pluripotent stem cell, Pluripotency

2

Self-renewal and differentiation of embryonic stem cells (ESCs) is directed by biological and/or physical cues that regulate multiple signaling cascades. We have previously shown that mESCs seeded in a type I collagen matrix demonstrate a loss of pluripotent marker expression and differentiate towards an osteogenic lineage. In this study, we examined if this effect was mediated in part through Arginylglycylaspartic acid (RGD) dependent integrin activity and/or mechano-transduction.

Concepts: DNA, Gene, Genetics, Gene expression, Developmental biology, Stem cell, Cellular differentiation, Embryonic stem cell

2

In Drosophila early post-meiotic spermatids, mitochondria undergo dramatic shaping into the Nebenkern, a spherical body with complex internal structure that contains two interwrapped giant mitochondrial derivatives. The purpose of this study was to elucidate genetic and molecular mechanisms underlying the shaping of this structure.

Concepts: DNA, Cell, Bacteria, Adenosine triphosphate, Mitochondrion, Oxidative phosphorylation, Cellular respiration, ATP synthase

2

DNA hypermethylation is a key epigenetic mechanism for the silencing of many genes in cancer. Hinokitiol, a tropolone-related natural compound, is known to induce apoptosis and cell cycle arrest and has anti-inflammatory and anti-tumor activities. However, the relationship between hinokitiol and DNA methylation is not clear. The aim of our study was to explore whether hinokitiol has an inhibitory ability on the DNA methylation in colon cancer cells.

Concepts: DNA, Gene expression, Cancer, Histone, Chromosome, Colorectal cancer, DNA replication, Methylation

2

Animals are exposed to a wide range of environmental stresses that can cause potentially fatal cellular damage. The ability to survive the period of stress as well as to repair any damage incurred is essential for fitness. Exposure to 2 °C for 24 h or longer is rapidly fatal to the nematode Caenorhabditis elegans, but the process of recovery from a shorter, initially non-lethal, cold shock is poorly understood.

Concepts: Caenorhabditis elegans, Animal, Caenorhabditis, Nematode, Model organism, Rhabditidae, Sydney Brenner, Caenorhabditis briggsae

2

BACKGROUND: Induced pluripotent stem cells (iPSC) are generated by reprogramming somatic cells into embryonic like state (ESC) using defined factors. There is great interest in these cells because of their potential for application in regenerative medicine. RESULTS: iPSC reprogrammed from murine tail tip fibroblasts were exposed to retinoic acid alone (RA) or in combination with TGF-beta1 and 3, basic fibroblast growth factor (bFGF) or bone morphogenetic protein 2 (BMP-2). The resulting cells expressed selected putative mesenchymal stem cells (MSCs) markers; differentiated toward osteoblasts and adipocytic cell lineages in vitro at varying degrees. TGF-beta1 and 3 derived-cells possessed higher potential to give rise to osteoblasts than bFGF or BMP-2 derived-cells while BMP-2 derived cells exhibited a higher potential to differentiate toward adipocytic lineage. TGF-beta1 in combination with RA derived-cells seeded onto HA/TCP ceramics and implanted in mice deposited typical bone. Immunofluorescence staining for bone specific proteins in cell seeded scaffolds tissue sections confirmed differentiation of the cells into osteoblasts in vivo. CONCLUSIONS: The results demonstrate that TGF-beta family of proteins could potentially be used to generate murine iPSC derived-cells with potential for osteoblasts differentiation and bone formation in vivo and thus for application in musculoskeletal tissue repair and regeneration.

Concepts: Protein, Extracellular matrix, Developmental biology, Stem cell, Bone marrow, Stem cells, Cell biology, Cellular differentiation

1

Generalized methods for understanding the cell biology of non-model species are quite rare, yet very much needed. In order to address this issue, we have modified a technique traditionally used in the biomedical field for ecological and evolutionary research. Fluorescent activated cell sorting (FACS) is often used for sorting and identifying cell populations. In this study, we developed a method to identify and isolate different cell populations in corals and other cnidarians.

Concepts: DNA, Gene, Evolution, Biology, Organism, Species, Cell biology, Coral