Discover the most talked about and latest scientific content & concepts.

Concept: Zeaxanthin


Speed of processing is a particularly important characteristic of the visual system. Often a behavioral reaction to a visual stimulus must be faster than the conscious perception of that stimulus, as is the case with many sports (e.g., baseball). Visual psychophysics provides a relatively simple and precise means of measuring visual processing speed called the temporal contrast sensitivity function (tCSF). Past study has shown that macular pigment (a collection of xanthophylls, lutein (L), meso-zeaxanthin (MZ) and zeaxanthin (Z), found in the retina) optical density (MPOD) is positively correlated with the tCSF. In this study, we found similar correlations when testing 102 young healthy subjects. As a follow-up, we randomized 69 subjects to receive a placebo (n=15) or one of two L and Z supplements (n=54). MPOD and tCSF were measured psychophysically at baseline and 4months. Neither MPOD nor tCSF changed for the placebo condition, but both improved significantly as a result of supplementation. These results show that an intervention with L and Z can increase processing speed even in young healthy subjects.

Concepts: Retina, Photoreceptor cell, Visual perception, Visual system, Carotenoid, Zeaxanthin, Macular degeneration, Xanthophyll


The dramatic rise in the use of smartphones, tablets, and laptop computers over the past decade has raised concerns about potentially deleterious health effects of increased “screen time” (ST) and associated short-wavelength (blue) light exposure. We determined baseline associations and effects of 6 months' supplementation with the macular carotenoids (MC) lutein, zeaxanthin, and mesozeaxanthin on the blue-absorbing macular pigment (MP) and measures of sleep quality, visual performance, and physical indicators of excessive ST. Forty-eight healthy young adults with at least 6 h of daily near-field ST exposure participated in this placebo-controlled trial. Visual performance measures included contrast sensitivity, critical flicker fusion, disability glare, and photostress recovery. Physical indicators of excessive screen time and sleep quality were assessed via questionnaire. MP optical density (MPOD) was assessed via heterochromatic flicker photometry. At baseline, MPOD was correlated significantly with all visual performance measures (p < 0.05 for all). MC supplementation (24 mg daily) yielded significant improvement in MPOD, overall sleep quality, headache frequency, eye strain, eye fatigue, and all visual performance measures, versus placebo (p < 0.05 for all). Increased MPOD significantly improves visual performance and, in turn, improves several undesirable physical outcomes associated with excessive ST. The improvement in sleep quality was not directly related to increases in MPOD, and may be due to systemic reduction in oxidative stress and inflammation.

Concepts: Photosynthesis, Antioxidant, Carotenoid, Laptop, Zeaxanthin, Lutein, Xanthophyll, Shutter speed


The lens and retina of the human eye are exposed constantly to light and oxygen. In situ phototransduction and oxidative phosphorylation within photoreceptors produces a high level of phototoxic and oxidative related stress. Within the eye, the carotenoids lutein and zeaxanthin are present in high concentrations in contrast to other human tissues. We discuss the role of lutein and zeaxanthin in ameliorating light and oxygen damage, and preventing age-related cellular and tissue deterioration in the eye. Epidemiologic research shows an inverse association between levels of lutein and zeaxanthin in eye tissues and age related degenerative diseases such as macular degeneration (AMD) and cataracts. We examine the role of these carotenoids as blockers of blue-light damage and quenchers of oxygen free radicals. This article provides a review of possible mechanisms of lutein action at a cellular and molecular level. Our review offers insight into current clinical trials and experimental animal studies involving lutein, and possible role of nutritional intervention in common ocular diseases that cause blindness.

Concepts: Epidemiology, Oxidative phosphorylation, Retina, Eye, Photoreceptor cell, Zeaxanthin, Macular degeneration, Lutein


The eye is a major sensory organ that requires special care for a healthy and productive lifestyle. Numerous studies have identified lutein and zeaxanthin to be essential components for eye health. Lutein and zeaxanthin are carotenoid pigments that impart yellow or orange color to various common foods such as cantaloupe, pasta, corn, carrots, orange/yellow peppers, fish, salmon and eggs. Their role in human health, in particular the health of the eye, is well established from epidemiological, clinical and interventional studies. They constitute the main pigments found in the yellow spot of the human retina which protect the macula from damage by blue light, improve visual acuity and scavenge harmful reactive oxygen species. They have also been linked with reduced risk of age-related macular degeneration (AMD) and cataracts. Research over the past decade has focused on the development of carotenoid-rich foods to boost their intake especially in the elderly population. The aim of this article is to review recent scientific evidences supporting the benefits of lutein and zexanthin in preventing the onset of two major age-related eye diseases with diets rich in these carotenoids. The review also lists major dietary sources of lutein and zeaxanthin and refers to newly developed foods, daily intake, bioavailability and physiological effects in relation to eye health. Examples of the newly developed high-lutein functional foods are also underlined.

Concepts: Nutrition, Antioxidant, Retina, Eye, Carotenoid, Zeaxanthin, Macular degeneration, Lutein


Purpose. A large body of research has linked macular lutein and zeaxanthin to reduced risk of degenerative eye disease. The earliest published hypothesis for the role of the pigments was not based on chronic protection but immediate function. Recent data on macular pigment (MP) have shown that screening the foveal cones from short-wave light does, in fact, result in improvements in photostress recovery (PR), glare disability (GD) and chromatic contrast (CC). This study examined those relations on a larger sample. Methods. 150 young healthy subjects were assessed. Plasma samples were obtained from 100 subjects for HPLC quantification of serum xanthophylls. MP density was measured using customized heterochromatic flicker photometery. GD, PR and CC were measured in Maxwellian view using a broadband xenon light source. GD was measured by increasing the intensity of an annulus until it veiled a central target. PR was measured as the time necessary to regain sight of a central target after a 5 second exposure to an intense bleaching light. CC was measured as the amount of light necessary in a 460 nm background to lose sight of a central target. Results. MP density was significantly related to serum lutein and zeaxanthin combined (r = 0.31, p = 0.002), GD (r = 0.24, p = 0.0015), PR (r = -0.18, p = 0.01), and CC (r = 0.46, p = 0.00005). Conclusions. These results confirm earlier reports of a significant relation between variation in macular pigment optical density and immediate effects on visual function. As with many species, intra-ocular yellow filters in humans appear to improve many aspects of the visual stimulus.

Concepts: Optics, Eye, Photoreceptor cell, Carotenoid, Zeaxanthin, Macular degeneration, Lutein, Xanthophyll


Phytochemical investigation of the stigmas of Crocus sativus resulted in the isolation of eight glycosides (1-8) including a new safranal glycoside (2) and a new carotenoid pigment (6). The structures of the new compounds were identified as (4R)-4-hydroxy-2,6,6-trimethylcyclohex-1-enecarbaldehyde 4-O-[β-D-glucopyranosyl(1 → 3)-β-D-glucopyranoside] (2) and trans-crocetin-1-al 1-O-β-gentiobiosyl ester (6) on the basis of extensive chemical and spectroscopic evidence.

Concepts: Zeaxanthin, Saffron, Crocus, Safranal, Iridaceae, Picrocrocin, Lycopene, Minoan civilization


To evaluate the effects of lutein and zeaxanthin on visual function in randomized controlled trials (RCTs) of age-related macular degeneration (AMD) patients.

Concepts: Epidemiology, Randomized controlled trial, Retina, Zeaxanthin, Macular degeneration, Lutein


We assessed the intake and major dietary sources of lutein, zeaxanthin and lycopene (non-provitamin A carotenoids) in Spain using food consumption data from the Spanish National Dietary Intake Survey (2009-2010). Three-day diaries and one 24-h recall were used to collect dietary data and a software application that includes HPLC data was used. Average intake of those carotenoids was 4290.8 μg/d (67.1% total carotenoid intake), mainly from vegetables (3414.0 μg/d), followed by fruits (393.5 μg/d), oils/fats (204.0 μg/d) and eggs/egg products (170.0 μg/d). Main sources of lutein and zeaxanthin were vegetables (62.9% total diet, 1235.2 μg/person/d). Lycopene intake was 3055.6 μg/d (71.2% of non-provitamin A carotenoids), mainly from tomato and by-products (86.3%) and watermelon. Red- and orange-colored fruits and vegetables were the major contributors of non-provitamin carotenoids (3219.0 μg/person/d). Balanced diets should favor fruits and vegetables over other dietary sources (oils, eggs, processed foods) that contain components to be consumed with moderation.

Concepts: Nutrition, Carotenoid, Carotenoids, Tomato, Zeaxanthin, Lutein, Xanthophyll, Lycopene


Lutein, a yellow xanthophyll carotenoid found in egg yolks and many colorful fruits and vegetables, has gained public health interest for its putative role in visual performance and reducing the risk of age-related macular degeneration. The National Academies of Sciences, Engineering and Medicine’s recommended Dietary Reference Intakes (DRIs) focus on preventing deficiency and toxicity, but there is a budding interest in establishing DRI-like guidelines for non-essential bioactives, like lutein, that promote optimal health and/or prevent chronic diseases. Lupton et al. developed a set of nine criteria to determine whether a bioactive is ready to be considered for DRI-like recommendations. These criteria include: (1) an accepted definition; (2) a reliable analysis method; (3) a food database with known amounts of the bioactive; (4) cohort studies; (5) clinical trials on metabolic processes; (6) clinical trials for dose-response and efficacy; (7) safety data; (8) systematic reviews and/or meta-analyses; (9) a plausible biological rationale. Based on a review of the literature supporting these criteria, lutein is ready to be considered for intake recommendations. Establishing dietary guidance for lutein would encourage the consumption of lutein-containing foods and raise public awareness about its potential health benefits.

Concepts: Health care, Medicine, Epidemiology, Clinical trial, Egg, Zeaxanthin, Macular degeneration, Lutein


Blood micronutrient status may change with age. We analyzed plasma carotenoids, α-/γ-tocopherol, and retinol and their associations with age, demographic characteristics, and dietary habits (assessed by a short food frequency questionnaire) in a cross-sectional study of 2118 women and men (age-stratified from 35 to 74 years) of the general population from six European countries. Higher age was associated with lower lycopene and α-/β-carotene and higher β-cryptoxanthin, lutein, zeaxanthin, α-/γ-tocopherol, and retinol levels. Significant correlations with age were observed for lycopene (r = -0.248), α-tocopherol (r = 0.208), α-carotene (r = -0.112), and β-cryptoxanthin (r = 0.125; all p < 0.001). Age was inversely associated with lycopene (-6.5% per five-year age increase) and this association remained in the multiple regression model with the significant predictors (covariables) being country, season, cholesterol, gender, smoking status, body mass index (BMI (kg/m²)), and dietary habits. The positive association of α-tocopherol with age remained when all covariates including cholesterol and use of vitamin supplements were included (1.7% vs. 2.4% per five-year age increase). The association of higher β-cryptoxanthin with higher age was no longer statistically significant after adjustment for fruit consumption, whereas the inverse association of α-carotene with age remained in the fully adjusted multivariable model (-4.8% vs. -3.8% per five-year age increase). We conclude from our study that age is an independent predictor of plasma lycopene, α-tocopherol, and α-carotene.

Concepts: Regression analysis, Statistics, Nutrition, Econometrics, Body mass index, Carotenoid, Zeaxanthin, Lutein