SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Weather

251

Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850-2014. Global temperature composites show a remarkable degree of coherence between high- and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.

Concepts: Ice, Climate, Weather, Climate change, Degrees of freedom, Ocean, Global warming, Latitude

191

Global climate change drives sea-level rise, increasing the frequency of coastal flooding. In most coastal regions, the amount of sea-level rise occurring over years to decades is significantly smaller than normal ocean-level fluctuations caused by tides, waves, and storm surge. However, even gradual sea-level rise can rapidly increase the frequency and severity of coastal flooding. So far, global-scale estimates of increased coastal flooding due to sea-level rise have not considered elevated water levels due to waves, and thus underestimate the potential impact. Here we use extreme value theory to combine sea-level projections with wave, tide, and storm surge models to estimate increases in coastal flooding on a continuous global scale. We find that regions with limited water-level variability, i.e., short-tailed flood-level distributions, located mainly in the Tropics, will experience the largest increases in flooding frequency. The 10 to 20 cm of sea-level rise expected no later than 2050 will more than double the frequency of extreme water-level events in the Tropics, impairing the developing economies of equatorial coastal cities and the habitability of low-lying Pacific island nations.

Concepts: Climate, Weather, Climate change, Wave, Solar variation, Flood, Tide, Storm surge

179

Although severe thunderstorms are one of the primary causes of catastrophic loss in the United States, their response to elevated greenhouse forcing has remained a prominent source of uncertainty for climate change impacts assessment. We find that the Coupled Model Intercomparison Project, Phase 5, global climate model ensemble indicates robust increases in the occurrence of severe thunderstorm environments over the eastern United States in response to further global warming. For spring and autumn, these robust increases emerge before mean global warming of 2 °C above the preindustrial baseline. We also find that days with high convective available potential energy (CAPE) and strong low-level wind shear increase in occurrence, suggesting an increasing likelihood of atmospheric conditions that contribute to the most severe events, including tornadoes. In contrast, whereas expected decreases in mean wind shear have been used to argue for a negative influence of global warming on severe thunderstorms, we find that decreases in shear are in fact concentrated in days with low CAPE and therefore do not decrease the total occurrence of severe environments. Further, we find that the shift toward high CAPE is most concentrated in days with low convective inhibition, increasing the occurrence of high-CAPE/low-convective inhibition days. The fact that the projected increases in severe environments are robust across a suite of climate models, emerge in response to relatively moderate global warming, and result from robust physical changes suggests that continued increases in greenhouse forcing are likely to increase severe thunderstorm occurrence, thereby increasing the risk of thunderstorm-related damage.

Concepts: Precipitation, Climate, Weather, Climate change, Thunderstorm, Global climate model, Severe weather, Wind shear

175

Interest in forecasting impacts of climate change have heightened attention in recent decades to how animals respond to variation in climate and weather patterns. One difficulty in determining animal response to climate variation is lack of long-term datasets that record animal behaviors over decadal scales. We used radar observations from the national NEXRAD network of Doppler weather radars to measure how group behavior in a colonially-roosting bat species responded to annual variation in climate and daily variation in weather over the past 11 years. Brazilian free-tailed bats (Tadarida brasiliensis) form dense aggregations in cave roosts in Texas. These bats emerge from caves daily to forage at high altitudes, which makes them detectable with Doppler weather radars. Timing of emergence in bats is often viewed as an adaptive trade-off between emerging early and risking predation or increased competition and emerging late which restricts foraging opportunities. We used timing of emergence from five maternity colonies of Brazilian free-tailed bats in south-central Texas during the peak lactation period (15 June-15 July) to determine whether emergence behavior was associated with summer drought conditions and daily temperatures. Bats emerged significantly earlier during years with extreme drought conditions than during moist years. Bats emerged later on days with high surface temperatures in both dry and moist years, but there was no relationship between surface temperatures and timing of emergence in summers with normal moisture levels. We conclude that emergence behavior is a flexible animal response to climate and weather conditions and may be a useful indicator for monitoring animal response to long-term shifts in climate.

Concepts: Weather, Emergence, Climate change, Meteorology, Cave, Radar, Mexican Free-tailed Bat, Weather radar

173

Several studies have analyzed the effects of weather on factors associated with weight loss. In this study, we directly analyzed the effect of weather on intentional weight loss using global-scale data provided by smartphone applications. Through Weather Underground API and the Noom Coach application, we extracted information on weather and body weight for each user located in each of several geographic areas on all login days. We identified meteorological information (pressure, precipitation, wind speed, dew point, and temperature) and self-monitored body weight data simultaneously. A linear mixed-effects model was performed analyzing 3274 subjects. Subjects in North America had higher initial BMIs than those of subjects in Eastern Asia. During the study period, most subjects who used the smartphone application experienced weight loss in a significant way (80.39%, p-value < 0.001). Subjects who infrequently recorded information about dinner had smaller variations than those of other subjects (βfreq.users dinner*time = 0.007, p-value < 0.001). Colder temperature, lower dew point, and higher values for wind speed and precipitation were significantly associated with weight loss. In conclusion, we found a direct and independent impact of meteorological conditions on intentional weight loss efforts on a global scale (not only on a local level).

Concepts: Climate, Weather, Humidity, Meteorology, North America, Wind, Monsoon, Fog

173

Global air temperature has become the primary metric for judging global climate change. The variability of global temperature on a decadal timescale is still poorly understood. This paper examines further one suggested hypothesis, that variations in solar radiation reaching the surface (Rs) have caused much of the observed decadal temperature variability. Because Rs only heats air during the day, its variability is plausibly related to the variability of diurnal temperature range (daily maximum temperature minus its minimum). We show that the variability of diurnal temperature range is consistent with the variability of Rs at timescales from monthly to decadal. This paper uses long comprehensive datasets for diurnal temperature range to establish what has been the contribution of Rs to decadal temperature variability. It shows that Rs over land globally peaked in the 1930s, substantially decreased from the 1940s to the 1970s, and changed little after that. Reduction of Rs caused a reduction of more than 0.2 °C in mean temperature during May to October from the 1940s through the 1970s, and a reduction of nearly 0.2 °C in mean air temperature during November to April from the 1960s through the 1970s. This cooling accounts in part for the near-constant temperature from the 1930s into the 1970s. Since then, neither the rapid increase in temperature from the 1970s through the 1990s nor the slowdown of warming in the early twenty-first century appear to be significantly related to changes of Rs.

Concepts: Climate, Weather, Temperature, Thermodynamics, Climate change, Meteorology, Solar variation, Global warming

166

Salinity is one of the most brutal environmental factors limiting the productivity of crop plants because most of the crop plants are sensitive to salinity caused by high concentrations of salts in the soil, and the area of land affected by it is increasing day by day. For all important crops, average yields are only a fraction - somewhere between 20% and 50% of record yields; these losses are mostly due to drought and high soil salinity, environmental conditions which will worsen in many regions because of global climate change. A wide range of adaptations and mitigation strategies are required to cope with such impacts. Efficient resource management and crop/livestock improvement for evolving better breeds can help to overcome salinity stress. However, such strategies being long drawn and cost intensive, there is a need to develop simple and low cost biological methods for salinity stress management, which can be used on short term basis. Microorganisms could play a significant role in this respect, if we exploit their unique properties such as tolerance to saline conditions, genetic diversity, synthesis of compatible solutes, production of plant growth promoting hormones, bio-control potential, and their interaction with crop plants.

Concepts: Photosynthesis, Organism, Species, Climate, Weather, Soil, Management, Climate change

161

This study is about four cacti species in the state of Chihuahua, (Coryphantha macromeris, Mammillaria lasiacantha, Echinocereus dasyacanthus and Ferocactus wislizenii). Geographic distribution was inferred with MaxEnt. Projection was estimated under three scenarios simulated from IPCC (A2, B1 and A1B) and four periods (2000, 2020, 2050 and 2080) with 19 climatic variables. MaxEnt projects a species decrease in 2020 under scenario A2, increasing in the following years. In 2080 all species, except E. dasyacanthus, will occupy a larger area than their current one. Scenario B1 projected for 2050 a decrease for all species, and in 2080 all species except E. dasyacanthus will increase their area. With A1B, C. macromeris decreases 27% from 2020 to 2050. E. dasyacanthus increases from 2020 to 2050 and decreases 73% from 2020 to 2080. M. lasiacantha decreases 13% from 2020 to 2080 and F. wislizenii will increase 13% from 2020 to 2080. Some species will remain stable on their areas despite climate changes, and other species may be affected under the conditions of the A1B scenario. It is important to continue with studies which give a broader perspective about the consequences of climate change, thus enabling decision-making about resource management.

Concepts: Precipitation, Climate, Weather, Climate change, Solar variation, Projection, Ciudad Juárez, Chihuahua

160

Cultivation of Coffea arabica is highly sensitive to and has been shown to be negatively impacted by progressive climatic changes. Previous research contributed little to support forward-looking adaptation. Agro-ecological zoning is a common tool to identify homologous environments and prioritize research. We demonstrate here a pragmatic approach to describe spatial changes in agro-climatic zones suitable for coffee under current and future climates. We defined agro-ecological zones suitable to produce arabica coffee by clustering geo-referenced coffee occurrence locations based on bio-climatic variables. We used random forest classification of climate data layers to model the spatial distribution of these agro-ecological zones. We used these zones to identify spatially explicit impact scenarios and to choose locations for the long-term evaluation of adaptation measures as climate changes. We found that in zones currently classified as hot and dry, climate change will impact arabica more than those that are better suited to it. Research in these zones should therefore focus on expanding arabica’s environmental limits. Zones that currently have climates better suited for arabica will migrate upwards by about 500m in elevation. In these zones the up-slope migration will be gradual, but will likely have negative ecosystem impacts. Additionally, we identified locations that with high probability will not change their climatic characteristics and are suitable to evaluate C. arabica germplasm in the face of climate change. These locations should be used to investigate long term adaptation strategies to production systems.

Concepts: Climate, Weather, Coffee, Ecosystem, Climate change, Caffeine, Coffea arabica, Coffea

153

The mass extinction of life 66 million years ago at the Cretaceous/Paleogene boundary, marked by the extinctions of dinosaurs and shallow marine organisms, is important because it led to the macroevolution of mammals and appearance of humans. The current hypothesis for the extinction is that an asteroid impact in present-day Mexico formed condensed aerosols in the stratosphere, which caused the cessation of photosynthesis and global near-freezing conditions. Here, we show that the stratospheric aerosols did not induce darkness that resulted in milder cooling than previously thought. We propose a new hypothesis that latitude-dependent climate changes caused by massive stratospheric soot explain the known mortality and survival on land and in oceans at the Cretaceous/Paleogene boundary. The stratospheric soot was ejected from the oil-rich area by the asteroid impact and was spread globally. The soot aerosols caused sufficiently colder climates at mid-high latitudes and drought with milder cooling at low latitudes on land, in addition to causing limited cessation of photosynthesis in global oceans within a few months to two years after the impact, followed by surface-water cooling in global oceans in a few years. The rapid climate change induced terrestrial extinctions followed by marine extinctions over several years.

Concepts: Earth, Climate, Weather, Climate change, Meteorology, Impact event, Dinosaur, Extinction event