Discover the most talked about and latest scientific content & concepts.

Concept: Vocal range


Choir singing is known to promote wellbeing. One reason for this may be that singing demands a slower than normal respiration, which may in turn affect heart activity. Coupling of heart rate variability (HRV) to respiration is called Respiratory sinus arrhythmia (RSA). This coupling has a subjective as well as a biologically soothing effect, and it is beneficial for cardiovascular function. RSA is seen to be more marked during slow-paced breathing and at lower respiration rates (0.1 Hz and below). In this study, we investigate how singing, which is a form of guided breathing, affects HRV and RSA. The study comprises a group of healthy 18 year olds of mixed gender. The subjects are asked to; (1) hum a single tone and breathe whenever they need to; (2) sing a hymn with free, unguided breathing; and (3) sing a slow mantra and breathe solely between phrases. Heart rate (HR) is measured continuously during the study. The study design makes it possible to compare above three levels of song structure. In a separate case study, we examine five individuals performing singing tasks (1-3). We collect data with more advanced equipment, simultaneously recording HR, respiration, skin conductance and finger temperature. We show how song structure, respiration and HR are connected. Unison singing of regular song structures makes the hearts of the singers accelerate and decelerate simultaneously. Implications concerning the effect on wellbeing and health are discussed as well as the question how this inner entrainment may affect perception and behavior.

Concepts: Scientific method, Medical statistics, Effect, Heart, Affect, Singing, Vocal range, Vocal music


Following the birth of modern opera in Italy in 1600, the demand for soprano voices grew up and the prepuberal castration was carried out to preserve the young male voice into adult life. Among the castrati, Gaspare Pacchierotti was probably one of the most famous. The remains of Pacchierotti were exhumed for the first time in 2013, for a research in the reconstruction of his biological profile, to understand the secrets behind his sublime voice and how the castration influenced the body. All the findings discovered, through anthropological and Computed Tomography analyses, are consistent both with the occupational markers of a singer and with the hormonal effects of castration. The erosion of cervical vertebrae, the insertion of respiratory muscles and muscles of the arms can be an effect of the bodily position and exercise during singing. The hormonal effect of castration were related to osteoporosis and to the disorders of spine.

Concepts: Human voice, Singing, Opera, Vocal range, Voice type, Mezzo-soprano, Soprano, Castrato


Voice, as a secondary sexual characteristic, is known to affect the perceived attractiveness of human individuals. But the underlying mechanism of vocal attractiveness has remained unclear. Here, we presented human listeners with acoustically altered natural sentences and fully synthetic sentences with systematically manipulated pitch, formants and voice quality based on a principle of body size projection reported for animal calls and emotional human vocal expressions. The results show that male listeners preferred a female voice that signals a small body size, with relatively high pitch, wide formant dispersion and breathy voice, while female listeners preferred a male voice that signals a large body size with low pitch and narrow formant dispersion. Interestingly, however, male vocal attractiveness was also enhanced by breathiness, which presumably softened the aggressiveness associated with a large body size. These results, together with the additional finding that the same vocal dimensions also affect emotion judgment, indicate that humans still employ a vocal interaction strategy used in animal calls despite the development of complex language.

Concepts: Human, Human voice, Phonation, Singing, Vocal range


Freddie Mercury was one of the twentieth century’s best-known singers of commercial contemporary music. This study presents an acoustical analysis of his voice production and singing style, based on perceptual and quantitative analysis of publicly available sound recordings. Analysis of six interviews revealed a median speaking fundamental frequency of 117.3 Hz, which is typically found for a baritone voice. Analysis of voice tracks isolated from full band recordings suggested that the singing voice range was 37 semitones within the pitch range of F#2 (about 92.2 Hz) to G5 (about 784 Hz). Evidence for higher phonations up to a fundamental frequency of 1,347 Hz was not deemed reliable. Analysis of 240 sustained notes from 21 a-cappella recordings revealed a surprisingly high mean fundamental frequency modulation rate (vibrato) of 7.0 Hz, reaching the range of vocal tremor. Quantitative analysis utilizing a newly introduced parameter to assess the regularity of vocal vibrato corroborated its perceptually irregular nature, suggesting that vibrato (ir)regularity is a distinctive feature of the singing voice. Imitation of subharmonic phonation samples by a professional rock singer, documented by endoscopic high-speed video at 4,132 frames per second, revealed a 3:1 frequency locked vibratory pattern of vocal folds and ventricular folds.

Concepts: Acoustics, Human voice, Phonation, Vocal folds, Singing, Vocal range, Voice type, A cappella


Dynamic MRI analysis of phonation has gathered interest in voice and speech physiology. However, there are limited data addressing the extent to which articulation is dependent on loudness.

Concepts: Human voice, Larynx, Phonation, Singing, Vocal range, Head voice, Chest voice, Whistle register


It is well known that non-human animals respond to information encoded in vocal signals, and the same can be said of humans. Specifically, human voice pitch affects how speakers are perceived. As such, does voice pitch affect how we perceive and select our leaders? To answer this question, we recorded men and women saying ‘I urge you to vote for me this November’. Each recording was manipulated digitally to yield a higher- and lower-pitched version of the original. We then asked men and women to vote for either the lower- or higher-pitched version of each voice. Our results show that both men and women select male and female leaders with lower voices. These findings suggest that men and women with lower-pitched voices may be more successful in obtaining positions of leadership. This might also suggest that because women, on average, have higher-pitched voices than men, voice pitch could be a factor that contributes to fewer women holding leadership roles than men. Additionally, while people are free to choose their leaders, these results clearly demonstrate that these choices cannot be understood in isolation from biological influences.

Concepts: Human, Male, Female, Understanding, Perception, Human voice, Singing, Vocal range


Abstract This case-control study aimed to investigate if there is any change on the spectral slope declination immediately after vocal function exercises (VFE) vs traditional vocal warm-up exercises in normal singers. Thirty-eight pop singers with perceptually normal voices were divided into two groups: an experimental group (n = 20) and a control group (n = 18). One single session with VFE for the experimental group and traditional singing warm-up exercises for the control group was applied. Voice was recorded before and after the exercises. The recorded tasks were to read a phonetically balanced text and to sing a song. Long-term average spectrum (LTAS) analysis included alpha ratio, L-L ratio, and singing power ratio (SPR). Acoustic parameters of voice samples pre- and post-training were compared. Comparison between VFE and control group was also performed. Significant changes after treatment included the alpha ratio and singing power ratio in speaking voice, and SPR in the singing voice for VFE group. The traditional vocal warm-up of the control group also showed pre-post changes. Significant differences between VFE group and control group for alpha ratio and SPR were found in speaking voice samples. This study demonstrates that VFE have an immediate effect on the spectrum of the voice, specifically a decrease on the spectral slope declination. The results of this study provide support for the advantageous effect of VFE as vocal warm-up on voice quality.

Concepts: Human voice, Singing, Opera, Vocal range, Head voice, Voice type, Vocal weight, Whistle register


OBJECTIVE: Vocal accuracy of a sung performance can be evaluated by two methods: acoustic analyses and subjective judgments. Acoustic analyses have been presented as a more reliable solution but both methods are still used for the evaluation of singing voice accuracy. This article presents a first time direct comparison of these methods. METHODS: One hundred sixty-six untrained singers were asked to sing the popular song “Happy Birthday.” These recordings constituted the database analyzed. Acoustic analyses were performed to quantify the pitch interval deviation, number of contour errors, and number of tonality modulations for each recording. Additionally, 18 experts in singing voice or music rated the global pitch accuracy of these performances. RESULTS: A high correlation occurred between acoustic measurements and subjective rating. The total model of acoustic analyses explained 81% of the variance of the judges' scores. Their rating was influenced by both tonality modulations and pitch interval deviation. CONCLUSIONS: This study highlights the congruence between objective and subjective measurements of vocal accuracy within this first time comparison. Our results confirm the relevance of the pitch interval deviation criterion in vocal accuracy assessment. Furthermore, the number of tonality modulations is also a salient criterion in perceptive rating and should be taken into account in studies using acoustic analyses.

Concepts: Critical thinking, Human voice, Singing, Opera, Vocal range, Vocal music, Voice type, Vocal weight


OBJECTIVE: Elite professional voice users experience a high vocal load and if voice quality deteriorates, their livelihoods are affected. Our aim was to assess how an elite professional voice user group, musical theater students (n=49), perceive their voices in comparison with medical students (n=43). STUDY DESIGN: Cross-sectional study. METHODS: Participants completed a confidential questionnaire including demographics and the Voice Handicap Index-10 (VHI-10) in September 2010. RESULTS: Response rate was 100% (92/92). The mean age of the medical students was 25 years and of musical theater students was 20 years. The mean overall VHI-10 score was higher in musical theater students compared with that of medical students (mean score, 5.56 and standard deviation [SD], 4.13 vs mean score, 3.79 and SD, 3.02, P=0.02), particularly in three VHI-10 items: voice strain, lack of clarity, and being upset from voice problem (mean score, 0.82 and SD, 0.86 vs mean score, 0.44 and SD, 0.67, P=0.02; mean score, 0.92 and SD, 0.89 vs mean score, 0.53 and SD, 0.70, P=0.02; and mean score, 0.49 and SD, 0.79 vs mean score, 0.07 and SD, 0.26, P=0.001, respectively). Furthermore, musical theater students report higher possible voice problems in the past (6/43 [14%], 21/49 [43%], P=0.002). CONCLUSIONS: In this small group, musical theater students report more handicap compared with medical students. It is possible that this difference may be because of the musical theater students experiencing greater voice use over time or better recognition of potential voice problems. This may mean that we need to do more to protect student’s voices by optimizing vocal care during their training, without neglecting the vocal needs of other students.

Concepts: Arithmetic mean, Human voice, Phonation, Standard deviation, Opera, Musical theatre, Vocal range


Auditory feedback plays an important role in monitoring vocal output and determining when adjustments are necessary. In this study a group of untrained singers participated in a frequency altered feedback experiment to examine if accuracy at matching a note could predict the degree of compensation to auditory feedback that was shifted in frequency. Participants were presented with a target note and instructed to match the note in pitch and duration. Following the onset of the participants' vocalizations their vocal pitch was shifted down one semi-tone at a random time during their utterance. This altered auditory feedback was instantaneously presented back to them through headphones. Results indicated that note matching accuracy did not correlate with compensation magnitude, however, a significant correlation was found between baseline variability and compensation magnitude. These results suggest that individuals with a more stable baseline fundamental frequency rely more on feedforward control mechanisms than individuals with more variable vocal production. This increased weighting of feedforward control means they are less sensitive to mismatches between their intended vocal production and auditory feedback.

Concepts: Control theory, Frequency, Singing, Fourier analysis, Control system, Feed-forward, Vocal range