Discover the most talked about and latest scientific content & concepts.

Concept: Viruses


Alteration of leaf surface phenotypes due to virus infection has the potential to affect the likelihood of colonisation by insect vectors, or to affect their feeding activities. The aim of this study was to investigate whether viruses that rely on insects for their transmission, and which can be sensitive to the polarization of light, affect the percentage polarization of light reflected from leaves. We also set out to discover whether a correlation exists between the expression of ECERIFERUM (CER) genes involved in cuticular wax synthesis and the polarization of the light reflected from the leaf surfaces. It was found that the aphid-vectored viruses Potato virus Y and Cucumber mosaic virus (CMV) caused significant reductions in the percentage polarization of light reflected from the abaxial surfaces of leaves of Nicotiana tabacum, whereas the non-insect-vectored viruses Tobacco mosaic virus and Pepino mosaic virus did not induce this effect. In Arabidopsis thaliana, there was little difference in the impacts of CMV and the non-insect-vectored Turnip vein clearing virus on polarization reflection, with both viruses increasing the percentage polarization of light reflected from the abaxial surfaces of leaves. There was a trend towards increased accumulation of CER6 transcripts in N. tabacum and A. thaliana when infected with aphid-vectored viruses. No significant effect of infection on trichome densities was found in A. thaliana, suggesting that alterations to the formation of cuticular waxes may be the more likely phenotypic change on the leaf surface contributing to the changes in polarization reflection. The possible impacts and adaptive significance of these effects with regard to viral transmission by insects are discussed.

Concepts: Gene, Evolution, Virus, Genome, Light, Arabidopsis thaliana, Arabidopsis, Viruses


The field of oncolytic virus therapy, the use of live, replicating viruses for the treatment of cancer, has expanded rapidly over the past decade. Preclinical models have clearly demonstrated anticancer activity against a number of different cancer types. Several agents have entered clinical trials and promising results have led to late stage clinical development for some viruses. The early clinical trials have demonstrated that oncolytic viruses by themselves have potential to result in tumor regression. Engineering of viruses to express novel genes have also led to the use of these vectors as a novel form of gene therapy. As a result, interest in oncolytic virus therapy has gained traction. The following review will focus on the first wave of clinical translation of oncolytic virus therapy, what has been learned so far, and potential challenges ahead for advancing the field.

Concepts: DNA, Gene, Cancer, Oncology, Microbiology, Virus, Oncolytic virus, Viruses


Tannins, plant-derived polyphenols and other related compounds, have been utilized for a long time in many fields such as the food industry and manufacturing. In this study, we investigated the anti-viral effects of tannins on 12 different viruses including both enveloped viruses (influenza virus H3N2, H5N3, herpes simplex virus-1, vesicular stomatitis virus, Sendai virus and Newcastle disease virus) and non-enveloped viruses (poliovirus, coxsachievirus, adenovirus, rotavirus, feline calicivirus and mouse norovirus). We found that extracts from persimmon (Diospyros kaki), which contains ca. 22% of persimmon tannin, reduced viral infectivity in more than 4-log scale against all of the viruses tested, showing strong anti-viral effects against a broad range of viruses. Other tannins derived from green tea, acacia and gallnuts were effective for some of the viruses, while the coffee extracts were not effective for any of the virus. We then investigated the mechanism of the anti-viral effects of persimmon extracts by using mainly influenza virus. Persimmon extracts were effective within 30 seconds at a concentration of 0.25% and inhibited attachment of the virus to cells. Pretreatment of cells with the persimmon extracts before virus infection or post-treatment after virus infection did not inhibit virus replication. Protein aggregation seems to be a fundamental mechanism underlying the anti-viral effect of persimmon tannin, since viral proteins formed aggregates when purified virions were treated with the persimmon extracts and since the anti-viral effect was competitively inhibited by a non-specific protein, bovine serum albumin. Considering that persimmon tannin is a food supplement, it has a potential to be utilized as a safe and highly effective anti-viral reagent against pathogenic viruses.

Concepts: Protein, Microbiology, Virus, Herpes simplex, Viruses, Tea, Persimmon, Mononegavirales


BACKGROUND: There is agreement that the infectivity assay with the duck hepatitis B virus (DHBV) is a suitable surrogate test to validate disinfectants for hepatitis B virucidal activity. However, since this test is not widely used, information is necessary whether disinfectants with limited virucidal activity also inactivate DHBV. In general, disinfectants with limited virucidal activity are used for skin and sensitive surfaces while agents with full activity are more aggressive. The present study compares the activity of five different biocides against DHBV and the classical test virus for limited virucidal activity, the vaccinia virus strain Lister Elstree (VACV) or the modified vaccinia Ankara strain (MVA). METHODS: Virucidal assay was performed as suspension test according to the German DVV/RKI guideline. Duck hepatitis B virus obtained from congenitally infected Peking ducks was propagated in primary duck embryonic hepatocytes and was detected by indirect immunofluorescent antigen staining. RESULTS: The DHBV was inactivated by the use of 40% ethanol within 1-min and 30% isopropanol within 2-min exposure. In comparison, 40% ethanol within 2-min and 40% isopropanol within 1-min exposure were effective against VACV/MVA. These alcohols only have limited virucidal activity, while the following agents have full activity. 0.01% peracetic acid inactivated DHBV within 2 min and a concentration of 0.005% had virucidal efficacy against VACV/MVA within 1 min. After 2-min exposure, 0.05% glutardialdehyde showed a comparable activity against DHBV and VACV/MVA. This is also the case for 0.7% formaldehyde after a contact time of 30 min. CONCLUSIONS: Duck hepatitis B virus is at least as sensitive to limited virucidal activity as VACV/MVA. Peracetic acid is less effective against DHBV, while the alcohols are less effective against VACV/MVA. It can be expected that in absence of more direct tests the results may be extrapolated to HBV.

Concepts: Alcohol, Virus, Ethanol, Hepatitis B, Viruses, Vaccinia, Hepadnaviridae, Modified vaccinia Ankara


Human parainfluenza virus type 3 (HPIV3) genome was detected in 4 baboons in Zambia. Antibody for HPIV3 was detected in 13 baboons and 6 vervet monkeys in 2 distinct areas in Zambia. Our findings suggest that wild nonhuman primates are susceptible to HPIV3 infection.

Concepts: Bacteria, Microbiology, Virus, Primate, Viruses, Old World monkey, Human parainfluenza viruses


With the recent regulatory approval of Talimogene laherparepvec (T-VEC) for the treatment of advanced of melanoma in the United States, Europe and Australia, oncolytic virus immunotherapy has earned its place in the clinic. However, the adoption of T-VEC by the U.S. oncology community has been slow, and so far has been largely limited to specialized cancer centers. Limiting factors include the intratumoral route of administration, which is unfamiliar to medical oncologists, biosafety concerns related to the use of a live virus in the clinic, and the explosion of other therapeutic strategies now available for the treatment of advanced melanoma. Herein, we review the development of T-VEC, and suggest how it fits into the in the current clinical treatment paradigm, and provide pearls for drug preparation, administration, and monitoring of response to therapy.

Concepts: Medicine, Oncology, Microbiology, United States, Chemotherapy, Therapy, Oncolytic virus, Viruses


Zika virus has emerged as a severe health threat with a rapidly expanding range. The IFITM family of restriction factors inhibits the replication of a broad range of viruses, including the closely related flaviruses West Nile virus and dengue virus. Here, we show that IFITM1 and IFITM3 inhibit Zika virus infection early in the viral life cycle. Moreover, IFITM3 can prevent Zika-virus-induced cell death. These results suggest that strategies to boost the actions and/or levels of the IFITMs might be useful for inhibiting a broad range of emerging viruses.

Concepts: Microbiology, Virus, Ribavirin, Viruses, Dengue fever, West Nile virus, Flaviviridae, Flaviviruses


Traditional response criteria may be insufficient to characterize full clinical benefits of anticancer immunotherapies. Consequently, endpoints such as durable response rate (DRR; a continuous response [complete or partial objective response] beginning within 12 months of treatment and lasting ≥6 months) have been employed. There has not, however, been validation that DRR correlates with other more traditional endpoints of clinical benefit such as overall survival.

Concepts: Immune system, Oncology, Microbiology, The Canon of Medicine,, Viruses, Cancer treatments, Immunotherapy


Glioblastoma is a highly lethal brain cancer that frequently recurs in proximity to the original resection cavity. We explored the use of oncolytic virus therapy against glioblastoma with Zika virus (ZIKV), a flavivirus that induces cell death and differentiation of neural precursor cells in the developing fetus. ZIKV preferentially infected and killed glioblastoma stem cells (GSCs) relative to differentiated tumor progeny or normal neuronal cells. The effects against GSCs were not a general property of neurotropic flaviviruses, as West Nile virus indiscriminately killed both tumor and normal neural cells. ZIKV potently depleted patient-derived GSCs grown in culture and in organoids. Moreover, mice with glioblastoma survived substantially longer and at greater rates when the tumor was inoculated with a mouse-adapted strain of ZIKV. Our results suggest that ZIKV is an oncolytic virus that can preferentially target GSCs; thus, genetically modified strains that further optimize safety could have therapeutic efficacy for adult glioblastoma patients.

Concepts: DNA, Neuron, Oncology, Microbiology, Brain tumor, Viruses, West Nile virus, Flavivirus


By the use of a modified ionizer device we describe effective prevention of airborne transmitted influenza A (strain Panama 99) virus infection between animals and inactivation of virus (>97%). Active ionizer prevented 100% (4/4) of guinea pigs from infection. Moreover, the device effectively captured airborne transmitted calicivirus, rotavirus and influenza virus, with recovery rates up to 21% after 40 min in a 19 m(3) room. The ionizer generates negative ions, rendering airborne particles/aerosol droplets negatively charged and electrostatically attracts them to a positively charged collector plate. Trapped viruses are then identified by reverse transcription quantitative real-time PCR. The device enables unique possibilities for rapid and simple removal of virus from air and offers possibilities to simultaneously identify and prevent airborne transmission of viruses.

Concepts: Electron, Electric charge, Microbiology, Virus, Atom, Influenza, Ion, Viruses