Discover the most talked about and latest scientific content & concepts.

Concept: Vinegar


The incidence of autoimmune diseases is increasing along with the expansion of industrial food processing and food additive consumption. The intestinal epithelial barrier, with its intercellular tight junction, controls the equilibrium between tolerance and immunity to non-self-antigens. As a result, particular attention is being placed on the role of tight junction dysfunction in the pathogenesis of AD. Tight junction leakage is enhanced by many luminal components, commonly used industrial food additives being some of them. Glucose, salt, emulsifiers, organic solvents, gluten, microbial transglutaminase, and nanoparticles are extensively and increasingly used by the food industry , claim the manufacturers, to improve the qualities of food. However, all of the aforementioned additives increase intestinal permeability by breaching the integrity of tight junction paracellular transfer. In fact, tight junction dysfunction is common in multiple autoimmune diseases and the central part played by the tight junction in autoimmune diseases pathogenesis is extensively described. It is hypothesized that commonly used industrial food additives abrogate human epithelial barrier function, thus, increasing intestinal permeability through the opened tight junction, resulting in entry of foreign immunogenic antigens and activation of the autoimmune cascade. Future research on food additives exposure-intestinal permeability-autoimmunity interplay will enhance our knowledge of the common mechanisms associated with autoimmune progression.

Concepts: Immune system, Food processing, Vinegar, Food additive


BACKGROUND AND AIMS: Dendrobium longicornu, commonly known as the ‘Long-horned Dendrobium’, is an endangered and medicinally important epiphytic orchid. Over-exploitation and habitat destruction seriously threaten this orchid in Northeast India. Our objective was to develop an efficient protocol for the mass propagation of D. longicornu using axillary bud segments. METHODOLOGY AND PRINCIPAL RESULTS: Axillary buds cultured in Murashige and Skoog semi-solid medium supplemented with α-naphthalene acetic acid (NAA), 2,4-dichlorophenoxy acetic acid (2,4-D) and 6-benzylaminopurine (BAP) readily developed into plantlets. These formed either directly from shoot buds or from intermediary protocorm-like bodies (PLBs). The maximum explant response (86.6 %) was obtained in medium supplemented with NAA at 30 µM, while the maximum number of shoots (4.42) and maximum bud-forming capacity (3.51) were observed in medium containing 15 µM BAP and 5 µM NAA in combination. Protocorm-like bodies were obtained when the medium contained 2,4-D. The maximum number of explants forming PLBs (41.48 %) was obtained in medium containing 15 µM BAP and 15 µM 2,4-D. Well-developed plantlets obtained after 20-25 weeks of culture were acclimatized and eventually transferred to the greenhouse. Over 60 % of these survived to form plants ∼3-4 cm tall after 90 days in glasshouse conditions using a substrate of crushed brick and charcoal, shredded bark and moss. CONCLUSIONS: The method described can readily be used for the rapid and large-scale regeneration of D. longicornu. Its commercial adoption would reduce the collection of this medicinally important and increasingly rare orchid from the wild.

Concepts: Bud, Culture, Acetic acid, Plant stem, Vinegar, Shoot, Orchidaceae


When a person consumes ethanol, the body quickly begins to convert it to acetic acid, which circulates in the blood and can serve as a source of energy for the brain and other organs. This study used 13C magnetic resonance spectroscopy to test whether chronic heavy drinking is associated with greater brain uptake and oxidation of acetic acid, providing a potential metabolic reward or adenosinergic effect as a consequence of drinking. Seven heavy drinkers, who regularly consumed at least 8 drinks per week and at least 4 drinks per day at least once per week, and 7 light drinkers, who consumed fewer than 2 drinks per week were recruited. The subjects were administered [2-13C]acetate for 2 hours and scanned throughout that time with magnetic resonance spectroscopy of the brain to observe natural 13C abundance of N-acetylaspartate (NAA) and the appearance of 13C-labeled glutamate, glutamine, and acetate. Heavy drinkers had approximately 2-fold more brain acetate relative to blood and twice as much labeled glutamate and glutamine. The results show that acetate transport and oxidation are faster in heavy drinkers compared with that in light drinkers. Our finding suggests that a new therapeutic approach to supply acetate during alcohol detoxification may be beneficial.

Concepts: Oxygen, Alcohol, Amino acid, Ethanol, Magnetic resonance imaging, Acetic acid, Vinegar, Drink


An acidic diet has been associated with erosive tooth wear. However, some people who consume dietary acids develop erosive tooth wear and some do not. This review paper provides an overview of the risk factors of dietary acid consumption which increase the likelihood of developing severe erosive tooth wear. Increased frequency of dietary acid consumption, particularly between meals appears to be the predominant risk factor. However, habitually drinking acidic drinks by sipping them slowly or swishing, rinsing or holding acidic drinks in the mouth before swallowing will also increase risk of progression. Consuming fruit over long time periods at a single sitting and dietary acids being served at increased temperatures have also been implicated. Additions of fruit or fruit flavourings to drinks and regular consumption of vinegars, pickles, acidic medications or acidic sugar-free sweets are potential hidden risk factors that should be discussed with patients at risk of erosive tooth wear progression. Behaviour change is difficult to achieve but specific, targeted behavioural interventions and offering alternatives may increase success.

Concepts: Protein, Acid, Hydrogen, Phosphoric acid, Citric acid, Vinegar


Stings from the hydrozoan species in the genus Physalia cause intense, immediate skin pain and elicit serious systemic effects. There has been much scientific debate about the most appropriate first aid for these stings, particularly with regard to whether vinegar use is appropriate (most current recommendations recommend against vinegar). We found that only a small percentage (≤1.0%) of tentacle cnidae discharge during a sting event using an ex vivo tissue model which elicits spontaneous stinging from live cnidarian tentacles. We then tested a variety of rinse solutions on both Atlantic and Pacific Physalia species to determine if they elicit cnidae discharge, further investigating any that did not cause immediate significant discharge to determine if they are able to inhibit cnidae discharge in response to chemical and physical stimuli. We found commercially available vinegars, as well as the recently developed Sting No More(®) Spray, were the most effective rinse solutions, as they irreversibly inhibited cnidae discharge. However, even slight dilution of vinegar reduced its protective effects. Alcohols and folk remedies, such as urine, baking soda and shaving cream, caused varying amounts of immediate cnidae discharge and failed to inhibit further discharge, and thus likely worsen stings.

Concepts: Effectiveness, Jellyfish, Stinger, Vinegar, Sodium bicarbonate, Hydrozoa, STING


Localised infections, and burn wound sepsis are key concerns in the treatment of burns patients, and prevention of colonisation largely relies on biocides. Acetic acid has been shown to have good antibacterial activity against various planktonic organisms, however data is limited on efficacy, and few studies have been performed on biofilms.

Concepts: Immune system, Bacteria, Ethanol, Medical emergencies, Acetic acid, Wound, Vinegar, Burn


Removal of pesticide residues from fresh produce is important to reduce pesticide exposure to humans. This study investigated the effectiveness of commercial and homemade washing agents in the removal of surface and internalized pesticide residues from apples. Surface-enhanced Raman scattering (SERS) mapping and liquid chromatography tandem mass spectrometry (LC-MS/MS) methods were used to determine the effectiveness of different washing agents in removing pesticide residues. Surface pesticide residues were most effectively removed by sodium bicarbonate (baking soda, NaHCO3) solution when compared to either tap water or Clorox bleach. Using a 10 mg/mL NaHCO3 washing solution, it took 12 and 15 min to completely remove thiabendazole or phosmet surface residues, respectively, following a 24 h exposure to these pesticides, which were applied at a concentration of 125 ng/cm(2). LC-MS/MS results showed, however, that 20% of applied thiabendazole and 4.4% of applied phosmet had penetrated into the apples following the 24 h exposure. Thiabendazole, a systemic pesticide, penetrated 4-fold deeper into the apple peel than did phosmet, a non-systemic pesticide, which led to more thiabendazole residues inside the apples, which could not be washed away using the NaHCO3 washing solution. This study gives us the information that the standard postharvest washing method using Clorox bleach solution for 2 min is not an effective means to completely remove pesticide residues on the surface of apples. The NaHCO3 method is more effective in removing surface pesticide residues on apples. In the presence of NaHCO3, thiabendazole and phosmet can degrade, which assists the physical removal force of washing. However, the NaHCO3 method was not completely effective in removing residues that have penetrated into the apple peel. The overall effectiveness of the method to remove all pesticide residues diminished as pesticides penetrated deeper into the fruit. In practical application, washing apples with NaHCO3 solution can reduce pesticides mostly from the surface. Peeling is more effective to remove the penetrated pesticides; however, bioactive compounds in the peels will become lost too.

Concepts: Pesticide, Vinegar, Insecticide, Pesticide residue, Sodium bicarbonate, Sodium carbonate, Natron, Peel


These are the days when one would go online first seeking home remedies before seeing a doctor. Apple cider vinegar (ACV) is one such popular yet scientifically under-validated remedy. Our results prove the unequivocal antimicrobial activity of ACV to be true at full strength concentrations. However, the activity cannot be generalised because although strong antibacterial activity was observed at 25% concentrations, in terms of antifungal activity, yeasts, especially Candida were found to be less susceptible. The antimicrobial/antioxidant properties are ascertained to the total phenolic contents of ACV, as confirmed by our characterisation of the bioactive compounds and antioxidant activity. When checking for its cytotoxicity, ACV exhibited toxicity even at concentrations as low as 0.7%. These results indicate that there is no question of generalising the idea of ACV usage, instead more in vitro and in vivo validations are necessary in order to precisely weigh the pros and cons of ACV.

Concepts: In vivo, In vitro, Toxicity, Vinegar, Fermentation, Apple, Cider, Apple cider


Jellyfish (cnidarians) have a worldwide distribution. Despite most being harmless, some species may cause local and also systemic reactions. Treatment of jellyfish envenomation is directed at: alleviating the local effects of venom, preventing further nematocyst discharges and controlling systemic reactions, including shock. In severe cases, the most important step is stabilizing and maintaining vital functions. With some differences between species, there seems to be evidence and consensus on oral/topical analgesics, hot water and ice packs as effective painkillers and on 30 s application of domestic vinegar (4%-6% acetic acid) to prevent further discharge of unfired nematocysts remaining on the skin. Conversely, alcohol, methylated spirits and fresh water should be carefully avoided, since they could massively discharge nematocysts; pressure immobilization bandaging should also be avoided, as laboratory studies show that it stimulates additional venom discharge from nematocysts. Most treatment approaches are presently founded on relatively weak evidence; therefore, further research (especially randomized clinical trials) is strongly recommended. Dissemination of appropriate treatment modalities should be deployed to better inform and educate those at risk. Adequate signage should be placed at beaches to notify tourists of the jellyfish risk. Swimmers in risky areas should wear protective equipment.

Concepts: Clinical trial, Ethanol, Acetic acid, Cnidaria, Jellyfish, Vinegar, Cnidocyte, Box jellyfish


Pear-derived Weissella sp. TN610 produced extracellular glycosyltransferase activity responsible for the synthesis of soluble exopolysaccharide from sucrose. Acid and dextranase-catalyzed hydrolysis revealed that the synthesized polymer was a glucan. According to (1)H and (13)C NMR analysis, the glucan produced by TN610 was a linear dextran made of 96% α-(1→6) and 4% α-(1→3) linkages. Zymogram analysis confirmed the presence of a unique glucansucrase of approximately 180kDa in the cell-free supernatant from TN610. The crude enzyme, optimally active at 37°C and pH 5, has promising potential for application as a food additive since it catalyzes dextran synthesis in sucrose-supplemented milk, allowing its solidification. A 4257-bp product corresponding to the mature glucansucrase gene was amplified by PCR from TN610. It encoded a polypeptide of 1418 residues having a calculated molecular mass of 156.089kDa and exhibiting 96% and 95% identity with glucansucrases from Lactobacillus fermentum Kg3 and Weissella cibaria CMU, respectively.

Concepts: Protein, Molecular biology, Enzyme, Antioxidant, Vinegar, Food additive, Food additives, Lactobacillus fermentum