Discover the most talked about and latest scientific content & concepts.

Concept: Ventral spinocerebellar tract


Our body feels like it is ours. However, individuals with body integrity identity disorder (BIID) lack this feeling of ownership for distinct limbs and desire amputation of perfectly healthy body parts. This extremely rare condition provides us with an opportunity to study the neural basis underlying the feeling of limb ownership, since these individuals have a feeling of disownership for a limb in the absence of apparent brain damage. Here we directly compared brain activation between limbs that do and do not feel as part of the body using functional MRI during separate tactile stimulation and motor execution experiments. In comparison to matched controls, individuals with BIID showed heightened responsivity of a large somatosensory network including the parietal cortex and right insula during tactile stimulation, regardless of whether the stimulated leg felt owned or alienated. Importantly, activity in the ventral premotor cortex depended on the feeling of ownership and was reduced during stimulation of the alienated compared to the owned leg. In contrast, no significant differences between groups were observed during the performance of motor actions. These results suggest that altered somatosensory processing in the premotor cortex is associated with the feeling of disownership in BIID, which may be related to altered integration of somatosensory and proprioceptive information.

Concepts: Brain, Cerebral cortex, Cerebrum, Sense, Somatosensory system, Premotor cortex, Proprioception, Ventral spinocerebellar tract


We rely on movement to explore the environment, for example, by palpating an object. In somatosensory cortex, activity related to movement of digits or whiskers is suppressed, which could facilitate detection of touch. Movement-related suppression is generally assumed to involve corollary discharges. Here we uncovered a thalamocortical mechanism in which cortical fast-spiking interneurons, driven by sensory input, suppress movement-related activity in layer 4 (L4) excitatory neurons. In mice locating objects with their whiskers, neurons in the ventral posteromedial nucleus (VPM) fired in response to touch and whisker movement. Cortical L4 fast-spiking interneurons inherited these responses from VPM. In contrast, L4 excitatory neurons responded mainly to touch. Optogenetic experiments revealed that fast-spiking interneurons reduced movement-related spiking in excitatory neurons, enhancing selectivity for touch-related information during active tactile sensation. These observations suggest a fundamental computation performed by the thalamocortical circuit to accentuate salient tactile information.

Concepts: Sensory system, Sense, Somatosensory system, Proprioception, Suppression, Ventral posteromedial nucleus, Somatic sensory system, Ventral spinocerebellar tract


Active sensing involves the fusion of internally generated motor events with external sensation. For rodents, active somatosensation includes scanning the immediate environment with the mystacial vibrissae. In doing so, the vibrissae may touch an object at any angle in the whisk cycle. The representation of touch and vibrissa self-motion may in principle be encoded along separate pathways, or share a single pathway, from the periphery to cortex. Past studies established that the spike rates in neurons along the lemniscal pathway from receptors to cortex, which includes the principal trigeminal and ventral-posterior-medial thalamic nuclei, are substantially modulated by touch. In contrast, spike rates along the paralemniscal pathway, which includes the rostral spinal trigeminal interpolaris, posteromedial thalamic, and ventral zona incerta nuclei, are only weakly modulated by touch. Here we find that neurons along the lemniscal pathway robustly encode rhythmic whisking on a cycle-by-cycle basis, while encoding along the paralemniscal pathway is relatively poor. Thus, the representations of both touch and self-motion share one pathway. In fact, some individual neurons carry both signals, so that upstream neurons with a supralinear gain function could, in principle, demodulate these signals to recover the known decoding of touch as a function of vibrissa position in the whisk cycle.

Concepts: Neuroanatomy, Brain, Somatosensory system, Thalamus, Encoder, Encoding, Decoding, Ventral spinocerebellar tract


Intracortical electrical micro-stimulation has been applied widely for the attempts on reconstruction of sensory functions. More recently, thalamic electrical stimulation has been proposed as a promising target for somatosensory stimulation. However, the cortical activations and mechanisms evoked by VPM stimulation remained unclear. In this report, the cortical neural responses to electrical stimulations were recorded by optical imaging of intrinsic signals. The impact of stimulation parameters was characterized to illustrate how the VPM stimulation alter cortical activities. Significant increases were found in cortical responses with increased stimulation amplitude or pulse width. However, frequency modulation exhibited significant inhibition with higher frequency stimulation. Our results suggest that optical imaging of intrinsic signals is sensitive and reliable to deep brain stimulations. These results may not only help to understand the modulation effects through thalamocortical pathway, but also show the possibility to use VPM stimulation to evoke frequency-tuned tactile sensations in rats.

Concepts: Optics, Sensory system, Sense, Somatosensory system, Phase, Thalamus, Proprioception, Ventral spinocerebellar tract


The precise neural mechanisms underlying transitions between consciousness and anesthetic-induced unconsciousness remain unclear. Here, we studied intracortical neuronal dynamics leading to propofol-induced unconsciousness by recording single-neuron activity and local field potentials directly in the functionally interconnecting somatosensory (S1) and frontal ventral premotor (PMv) network during a gradual behavioral transition from full alertness to loss of consciousness (LOC) and on through a deeper anesthetic level. Macaque monkeys were trained for a behavioral task designed to determine the trial-by-trial alertness and neuronal response to tactile and auditory stimulation. We show that disruption of coherent beta oscillations between S1 and PMv preceded, but did not coincide with, the LOC. LOC appeared to correspond to pronounced but brief gamma-/high-beta-band oscillations (lasting ∼3 min) in PMv, followed by a gamma peak in S1. We also demonstrate that the slow oscillations appeared after LOC in S1 and then in PMv after a delay, together suggesting that neuronal dynamics are very different across S1 versus PMv during LOC. Finally, neurons in both S1 and PMv transition from responding to bimodal (tactile and auditory) stimulation before LOC to only tactile modality during unconsciousness, consistent with an inhibition of multisensory integration in this network. Our results show that propofol-induced LOC is accompanied by spatiotemporally distinct oscillatory neuronal dynamics across the somatosensory and premotor network and suggest that a transitional state from wakefulness to unconsciousness is not a continuous process, but rather a series of discrete neural changes.

Concepts: Nervous system, Neuron, Brain, Cerebral cortex, Axon, Primate, Unconscious mind, Ventral spinocerebellar tract


Behavioural reactions to sensory stimuli vary with the level of arousal, but little is known about the underlying reorganization of neuronal networks. In this study, we use chronic recordings from the somatosensory regions of the thalamus and cortex of behaving rats together with a novel analysis of functional connectivity to show that during low arousal tactile signals are transmitted via the ventral posteromedial thalamic nucleus (VPM), a first-order thalamic relay, to the primary somatosensory (barrel) cortex and then from the cortex to the posterior medial thalamic nucleus (PoM), which plays a role of a higher-order thalamic relay. By contrast, during high arousal this network scheme is modified and both VPM and PoM transmit peripheral input to the barrel cortex acting as first-order relays. We also show that in urethane anaesthesia PoM is largely excluded from the thalamo-cortical loop. We thus demonstrate a way in which the thalamo-cortical system, despite its fixed anatomy, is capable of dynamically reconfiguring the transmission route of a sensory signal in concert with the behavioural state of an animal.

Concepts: Sensory system, Sense, Somatosensory system, Thalamus, Proprioception, Thalamic reticular nucleus, Ventral posteromedial nucleus, Ventral spinocerebellar tract


Mesoscale local functional organizations of the primate spinal cord are largely unknown. Using high-resolution fMRI at 9.4 T, we identified distinct interhorn and intersegment fMRI activation patterns to tactile versus nociceptive heat stimulation of digits in lightly anesthetized monkeys. Within a spinal segment, 8 Hz vibrotactile stimuli elicited predominantly fMRI activations in the middle part of ipsilateral dorsal horn (iDH), along with significantly weaker activations in ipsilateral (iVH) and contralateral (cVH) ventral horns. In contrast, nociceptive heat stimuli evoked widespread strong activations in the superficial part of iDH, as well as in iVH and contralateral dorsal (cDH) horns. As controls, only weak signal fluctuations were detected in the white matter. The iDH responded most strongly to both tactile and heat stimuli, whereas the cVH and cDH responded selectively to tactile versus nociceptive heat, respectively. Across spinal segments, iDH activations were detected in three consecutive segments in both tactile and heat conditions. Heat responses, however, were more extensive along the cord, with strong activations in iVH and cDH in two consecutive segments. Subsequent subunit B of cholera toxin tracer histology confirmed that the spinal segments showing fMRI activations indeed received afferent inputs from the stimulated digits. Comparisons of the fMRI signal time courses in early somatosensory area 3b and iDH revealed very similar hemodynamic stimulus-response functions. In summary, we identified with fMRI distinct segmental networks for the processing of tactile and nociceptive heat stimuli in the cervical spinal cord of nonhuman primates.

Concepts: Spinal cord, Sensory system, Somatosensory system, Primate, Anatomy, Proprioception, Segment, Ventral spinocerebellar tract


It has been suggested that while movements directed at visible targets are processed within the dorsal stream, movements executed after delay rely on the visual representations of the ventral stream (Milner & Goodale, 2006). This interpretation is supported by the observation that a patient with ventral stream damage (D.F.) has trouble performing accurate movements after a delay, but performs normally when the target is visible during movement programming. We tested D.F.’s visuomotor performance in a letter-posting task whilst varying the amount of visual feedback available. Additionally, we also varied whether D.F. received tactile feedback at the end of each trial (posting through a letter box vs posting on a screen) and whether environmental cues were available during the delay period (removing the target only vs suppressing vision completely with shutter glasses). We found that in the absence of environmental cues patient D.F. was unaffected by the introduction of delay and performed as accurately as healthy controls. However, when environmental cues and vision of the moving hand were available during and after the delay period, D.F.’s visuomotor performance was impaired. Thus, while healthy controls benefit from the availability of environmental landmarks and/or visual feedback of the moving hand, such cues seem less beneficial to D.F. Taken together our findings suggest that ventral stream damage does not always impact the ability to make delayed movements but compromises the ability to use environmental landmarks and visual feedback efficiently.

Concepts: Sensory system, Somatosensory system, Performance, Delay, The Target, Performing arts, Ventral spinocerebellar tract, Agnosia


Previous studies have suggested that the putative human homologue of the ventral intraparietal area (hVIP) is crucially involved in the remapping of tactile information into external spatial coordinates and in the realignment of tactile and visual maps. It is unclear, however, whether hVIP is critical for the remapping process during audio-tactile cross-modal spatial interactions. The audio-tactile ventriloquism effect, where the perceived location of a sound is shifted toward the location of a synchronous but spatially disparate tactile stimulus, was used to probe spatial interactions in audio-tactile processing. Eighteen healthy volunteers were asked to report the perceived location of brief auditory stimuli presented from three different locations (left, center, and right). Auditory stimuli were presented either alone (unimodal stimuli) or concurrently to a spatially discrepant tactile stimulus applied to the left or right index finger (bimodal stimuli), with the hands adopting either an uncrossed or a crossed posture. Single pulses of TMS were delivered over the hVIP or a control site (primary somatosensory cortex, SI) 80 msec after trial onset. TMS to the hVIP, compared with the control SI-TMS, interfered with the remapping of touch into external space, suggesting that hVIP is crucially involved in transforming spatial reference frames across audition and touch.

Concepts: Sensory system, Sense, Somatosensory system, Parietal lobe, Finger, Hand, Somatosensory cortex, Ventral spinocerebellar tract


Spinocerebellar tract neurons are inhibited by various sources of input via pathways activated by descending tracts as well as peripheral afferents. Inhibition may be used to modulate transmission of excitatory information forwarded to the cerebellum. However it may also provide information on the degree of inhibition of motoneurons and on the operation of inhibitory premotor neurons. Our aim was to extend previous comparisons of morphological substrates of excitation of spinocerebellar neurons to inhibitory input. Contacts formed by inhibitory axon terminals were characterised as either GABAergic, glycinergic or both GABAergic/glycinergic by using antibodies against vesicular GABA transporter, glutamic acid decarboxylase and gephyrin. Quantitative analysis revealed the presence of much higher proportions of inhibitory contacts when compared with excitatory contacts on spinal border (SB) neurons. However similar proportions of inhibitory and excitatory contacts were associated with ventral spinocerebellar tract (VSCT) and dorsal spinocerebellar tract neurons located in Clarke’s column (ccDSCT) and the dorsal horn (dhDSCT). In all of the cells, the majority of inhibitory terminals were glycinergic. The density of contacts was higher on somata and proximal versus distal dendrites of SB and VSCT neurons but more evenly distributed in ccDSCT and dhDSCT neurons. Variations in the density and distribution of inhibitory contacts found in this study may reflect differences in information on inhibitory processes forwarded by subtypes of spinocerebellar tract neurons to the cerebellum.

Concepts: Central nervous system, Nervous system, Neuron, Action potential, Cerebellum, Axon, Spinocerebellar tract, Ventral spinocerebellar tract