Discover the most talked about and latest scientific content & concepts.

Concept: Umbilical cord


In the developed world, extreme prematurity is the leading cause of neonatal mortality and morbidity due to a combination of organ immaturity and iatrogenic injury. Until now, efforts to extend gestation using extracorporeal systems have achieved limited success. Here we report the development of a system that incorporates a pumpless oxygenator circuit connected to the fetus of a lamb via an umbilical cord interface that is maintained within a closed ‘amniotic fluid’ circuit that closely reproduces the environment of the womb. We show that fetal lambs that are developmentally equivalent to the extreme premature human infant can be physiologically supported in this extra-uterine device for up to 4 weeks. Lambs on support maintain stable haemodynamics, have normal blood gas and oxygenation parameters and maintain patency of the fetal circulation. With appropriate nutritional support, lambs on the system demonstrate normal somatic growth, lung maturation and brain growth and myelination.

Concepts: Pregnancy, Childbirth, Infant, Blood, Embryo, Fetus, Embryology, Umbilical cord


Abortion is largely accepted even for reasons that do not have anything to do with the fetus' health. By showing that (1) both fetuses and newborns do not have the same moral status as actual persons, (2) the fact that both are potential persons is morally irrelevant and (3) adoption is not always in the best interest of actual people, the authors argue that what we call ‘after-birth abortion’ (killing a newborn) should be permissible in all the cases where abortion is, including cases where the newborn is not disabled.

Concepts: Pregnancy, Childbirth, Infant, Fetus, Fertility, Abortion, Umbilical cord, Placenta


Cerebral palsy (CP) is a condition affecting young children that causes lifelong disabilities. Umbilical cord blood cells improve motor function in experimental systems via paracrine signaling. After demonstrating safety, we conducted a Phase II trial of autologous cord blood (ACB) infusion in children with CP to test whether ACB could improve function (, NCT01147653; IND 14360). In this double-blind, placebo-controlled, crossover study of a single intravenous infusion of 1-5 × 10(7) total nucleated cells per kilogram of ACB, children ages 1 to 6 years with CP were randomly assigned to receive ACB or placebo at baseline, followed by the alternate infusion 1 year later. Motor function and magnetic resonance imaging brain connectivity studies were performed at baseline, 1, and 2 years post-treatment. The primary endpoint was change in motor function 1 year after baseline infusion. Additional analyses were performed at 2 years. Sixty-three children (median age 2.1 years) were randomized to treatment (n = 32) or placebo (n = 31) at baseline. Although there was no difference in mean change in Gross Motor Function Measure-66 (GMFM-66) scores at 1 year between placebo and treated groups, a dosing effect was identified. In an analysis 1 year post-ACB treatment, those who received doses ≥2 × 10(7) /kg demonstrated significantly greater increases in GMFM-66 scores above those predicted by age and severity, as well as in Peabody Developmental Motor Scales-2 Gross Motor Quotient scores and normalized brain connectivity. Results of this study suggest that appropriately dosed ACB infusion improves brain connectivity and gross motor function in young children with CP. Stem Cells Translational Medicine 2017.

Concepts: Cell nucleus, Clinical trial, Stem cell, Magnetic resonance imaging, Umbilical cord, Cord blood, Wharton's jelly, Cord blood bank


Human umbilical cord (hUC) blood and tissue are non-invasive sources of potential stem/progenitor cells with similar cell surface properties as bone marrow stromal cells (BMSCs). While they are limited in cord blood, they may be more abundant in hUC. However, the hUC is an anatomically complex organ and the potential of cells in various sites of the hUC has not been fully explored. We dissected the hUC into its discrete sites and isolated hUC cells from the cord placenta junction (CPJ), cord tissue (CT), and Wharton’s jelly (WJ). Isolated cells displayed fibroblastoid morphology, and expressed CD29, CD44, CD73, CD90, and CD105, and showed evidence of differentiation into multiple lineages in vitro. They also expressed low levels of pluripotency genes, OCT4, NANOG, SOX2 and KLF4. Passaging markedly affected cell proliferation with concomitant decreases in the expression of pluripotency and other markers, and an increase in chondrogenic markers. Microarray analysis further revealed the differences in the gene expression of CPJ-, CT- and WJ-hUC cells. Five coding and five lncRNA genes were differentially expressed in low vs. high passage hUC cells. Only MAEL was expressed at high levels in both low and high passage CPJ-hUC cells. They displayed a greater proliferation limit and a higher degree of multi-lineage differentiation in vitro and warrant further investigation to determine their full differentiation capacity, and therapeutic and regenerative medicine potential.

Concepts: DNA, Gene, Gene expression, Bacteria, Developmental biology, Stem cell, Bone marrow, Umbilical cord


Seafood consumption during pregnancy is thought to be beneficial for child neuropsychological development, but to our knowledge no large cohort studies with high fatty fish consumption have analyzed the association by seafood subtype. We evaluated 1,892 and 1,589 mother-child pairs at the ages of 14 months and 5 years, respectively, in a population-based Spanish birth cohort established during 2004-2008. Bayley and McCarthy scales and the Childhood Asperger Syndrome Test were used to assess neuropsychological development. Results from multivariate linear regression models were adjusted for sociodemographic characteristics and further adjusted for umbilical cord blood mercury or long-chain polyunsaturated fatty acid concentrations. Overall, consumption of seafood above the recommended limit of 340 g/week was associated with 10-g/week increments in neuropsychological scores. By subtype, in addition to lean fish, consumption of large fatty fish showed a positive association; offspring of persons within the highest quantile (>238 g/week) had an adjusted increase of 2.29 points in McCarthy general cognitive score (95% confidence interval: 0.42, 4.16). Similar findings were observed for the Childhood Asperger Syndrome Test. Beta coefficients diminished 15%-30% after adjustment for mercury or long-chain polyunsaturated fatty acid concentrations. Consumption of large fatty fish during pregnancy presents moderate child neuropsychological benefits, including improvements in cognitive functioning and some protection from autism-spectrum traits.

Concepts: Cohort study, Linear regression, Longitudinal study, Nutrition, Essential fatty acid, Umbilical cord, Cord blood, Cord blood bank


The aim of this exploratory study was to assess the safety and clinical effects of autologous umbilical cord blood (AUCB) infusion in children with idiopathic autism spectrum disorder (ASD). Twenty-nine children 2 to 6 years of age with a confirmed diagnosis of ASD participated in this randomized, blinded, placebo-controlled, crossover trial. Participants were randomized to receive AUCB or placebo, evaluated at baseline, 12, and 24 weeks, received the opposite infusion, then re-evaluated at the same time points. Evaluations included assessments of safety, Expressive One Word Picture Vocabulary Test, 4th edition, Receptive One Word Picture Vocabulary Test, 4th edition, Clinical Global Impression, Stanford-Binet Fluid Reasoning and Knowledge, and the Vineland Adaptive Behavior and Socialization Subscales. Generalized linear models were used to assess the effects of the response variables at the 12- and 24-week time periods under each condition (AUCB, placebo). There were no serious adverse events. There were trends toward improvement, particularly in socialization, but there were no statistically significant differences for any endpoints. The results of this study suggest that autologous umbilical cord infusions are safe for children with ASD. Tightly controlled trials are necessary to further progress the study of AUCB for autism. Stem Cells Translational Medicine 2018.

Concepts: Pharmacology, Clinical trial, Crossover study, Clinical research, Umbilical cord, Cord blood, Wharton's jelly, Autism spectrum


Despite advances in early diagnosis and behavioral therapies, more effective treatments for children with autism spectrum disorder (ASD) are needed. We hypothesized that umbilical cord blood-derived cell therapies may have potential in alleviating ASD symptoms by modulating inflammatory processes in the brain. Accordingly, we conducted a phase I, open-label trial to assess the safety and feasibility of a single intravenous infusion of autologous umbilical cord blood, as well as sensitivity to change in several ASD assessment tools, to determine suitable endpoints for future trials. Twenty-five children, median age 4.6 years (range 2.26-5.97), with a confirmed diagnosis of ASD and a qualified banked autologous umbilical cord blood unit, were enrolled. Children were evaluated with a battery of behavioral and functional tests immediately prior to cord blood infusion (baseline) and 6 and 12 months later. Assessment of adverse events across the 12-month period indicated that the treatment was safe and well tolerated. Significant improvements in children’s behavior were observed on parent-report measures of social communication skills and autism symptoms, clinician ratings of overall autism symptom severity and degree of improvement, standardized measures of expressive vocabulary, and objective eye-tracking measures of children’s attention to social stimuli, indicating that these measures may be useful endpoints in future studies. Behavioral improvements were observed during the first 6 months after infusion and were greater in children with higher baseline nonverbal intelligence quotients. These data will serve as the basis for future studies to determine the efficacy of umbilical cord blood infusions in children with ASD. Stem Cells Translational Medicine 2017.

Concepts: Stem cell, Umbilical cord, Cord blood, Wharton's jelly, Asperger syndrome, Autism spectrum, Communication, Cord blood bank


Prenatal exposure to chlorpyrifos (CPF), an organophosphate insecticide, is associated with neurobehavioral deficits in humans and animal models. We investigated associations between CPF exposure and brain morphology using magnetic resonance imaging in 40 children, 5.9-11.2 y, selected from a nonclinical, representative community-based cohort. Twenty high-exposure children (upper tertile of CPF concentrations in umbilical cord blood) were compared with 20 low-exposure children on cortical surface features; all participants had minimal prenatal exposure to environmental tobacco smoke and polycyclic aromatic hydrocarbons. High CPF exposure was associated with enlargement of superior temporal, posterior middle temporal, and inferior postcentral gyri bilaterally, and enlarged superior frontal gyrus, gyrus rectus, cuneus, and precuneus along the mesial wall of the right hemisphere. Group differences were derived from exposure effects on underlying white matter. A significant exposure × IQ interaction was derived from CPF disruption of normal IQ associations with surface measures in low-exposure children. In preliminary analyses, high-exposure children did not show expected sex differences in the right inferior parietal lobule and superior marginal gyrus, and displayed reversal of sex differences in the right mesial superior frontal gyrus, consistent with disruption by CPF of normal behavioral sexual dimorphisms reported in animal models. High-exposure children also showed frontal and parietal cortical thinning, and an inverse dose-response relationship between CPF and cortical thickness. This study reports significant associations of prenatal exposure to a widely used environmental neurotoxicant, at standard use levels, with structural changes in the developing human brain.

Concepts: Brain, Magnetic resonance imaging, Cerebral cortex, Cerebrum, Polycyclic aromatic hydrocarbon, Umbilical cord, Frontal lobe, Organophosphate


BACKGROUND: Data from epidemiological and animal model studies suggest that nutrition during pregnancy may affect the health status of subsequent generations. These transgenerational effects are now being explained by disruptions at the level of the epigenetic machinery. Besides in vitro environmental exposures, the possible impact on the reprogramming of methylation profiles at imprinted genes at a much earlier time point, such as during spermatogenesis or oogenesis, has not previously been considered. In this study, our aim was to determine associations between preconceptional obesity and DNA methylation profiles in the offspring, particularly at the differentially methylated regions (DMRs) of the imprinted Insulin-like Growth Factor 2 (IGF2) gene. METHODS: We examined DNA from umbilical cord blood leukocytes from 79 newborns, born between July 2005 and November 2006 at Duke University Hospital, Durham, NC. Their mothers participated in the Newborn Epigenetics Study (NEST) during pregnancy. Parental characteristics were obtained via standardized questionnaires and medical records. DNA methylation patterns at two DMRs were analyzed by bisulfite pyrosequencing; one DMR upstream of IGF2 (IGF2 DMR), and one DMR upstream of the neighboring H19 gene (H19 DMR). Multiple regression models were used to determine potential associations between the offspring’s DNA methylation patterns and parental obesity before conception. Obesity was defined as body mass index (BMI) [greater than or equal to]30 kg/m2. RESULTS: Hypomethylation at the IGF2 DMR was associated with paternal obesity. Even after adjusting for several maternal and newborn characteristics, we observed a persistent inverse association between DNA methylation in the offspring and paternal obesity (beta-coefficient was -5.28, P = 0.003). At the H19 DMR, no significant associations were detected between methylation patterns and paternal obesity. Our data suggest an increase in DNA methylation at the IGF2 and H19 DMRs among newborns from obese mothers, but a larger study is warranted to further explore the potential effects of maternal obesity or lifestyle on the offspring’s epigenome. CONCLUSIONS: While our small sample size is limited, our data indicate a preconceptional impact of paternal obesity on the reprogramming of imprint marks during spermatogenesis. Given the biological importance of imprinting fidelity, our study provides evidence for transgenerational effects of paternal obesity that may influence the offspring’s future health status. See related commentary article here

Concepts: DNA, Gene expression, Histone, Epigenetics, Body mass index, DNA methylation, Umbilical cord, Genomic imprinting


“Cell-in-cell” denotes an invasive phenotype in which one cell actively internalizes in another. The novel human T-cell line HOZOT, established from human umbilical cord blood, was shown to penetrate a variety of human cancer cells but not normal cells. Oncolytic viruses are emerging as biological therapies for human cancers; however, efficient viral delivery is limited by a lack of tumor-specific homing and presence of pre-existing or therapy-induced neutralizing antibodies. Here, we report a new, intriguing approach using HOZOT cells to transmit biologics such as oncolytic viruses into human cancer cells by cell-in-cell invasion. HOZOT cells were successfully loaded via human CD46 antigen with an attenuated adenovirus containing the fiber protein of adenovirus serotype 35 (OBP-401/F35), in which the telomerase promoter regulates viral replication. OBP-401/F35-loaded HOZOT cells were efficiently internalized into human cancer cells and exhibited tumor-specific killing by release of viruses, even in the presence of anti-viral neutralizing antibodies. Moreover, intraperitoneal administration of HOZOT cells loaded with OBP-401/F35 significantly suppressed peritoneally disseminated tumor growth in mice. This unique cell-in-cell property provides a platform for selective delivery of biologics into human cancer cells, which has important implications for the treatment of human cancers.

Concepts: Immune system, Protein, Gene, Cancer, Oncology, Microbiology, DNA replication, Umbilical cord