Discover the most talked about and latest scientific content & concepts.

Concept: Transcutaneous pacing


Persistent left superior vena cava (PLSVC) is present in about 0.3%-0.5% of the general population and in about 12% of patients with other abnormalities [1]. This congenital anomaly is usually asymptomatic and does not cause any physiological problems. However, it may become a significant problem in multiple clinical situations. Various complications related to PLVSC are encountered in anaesthesiological, nephrological, oncological and cardiological procedures. The presence of PLSVC is usually incidentally detected during placement of pacemaker (PM), implantable cardioverter-defibrillator (ICD) and cardiac resynchronization therapy (CRT) leads. Technical difficulties during lead positioning (especially ventricular leads) are commonly known and often described in the literature. The purpose of the present study was to evaluate the specific methods used for implantation of increasingly complicated pacing systems, finding an optimal strategy in patients with PLSVC, especially with electrotherapy complications.

Concepts: Implantable cardioverter-defibrillator, Cardiac electrophysiology, Magnetic resonance imaging, Vein, Inferior vena cava, Superior vena cava, Artificial pacemaker, Transcutaneous pacing


The introduction of the so-called newer-generation transcatheter aortic valve implantation (TAVI) devices has led to a dramatic reduction in the incidence of complications associated with the procedure. However, preliminary data suggest that conduction abnormalities (particularly new-onset atrioventricular block and left bundle branch block) remain a frequent complication post TAVI. Although inconsistencies across studies are apparent, new-onset conduction abnormalities post TAVI may be associated with higher incidences of mortality, sudden cardiac death and left ventricular dysfunction. Strategies intended both to reduce the risk and to improve the management of such complications are clearly warranted. In fact, the indication and timing of permanent pacemaker implantation are frequently individualised according to centre and/or operator preference. Currently, studies assessing the impact of these complications and the optimal indications for permanent cardiac pacing are underway. In this article, we review the data available on the incidence and impact of conduction disturbances following TAVI, and propose a strategy for the management of such complications.

Concepts: Cardiology, Heart, Cardiac arrest, Cardiac electrophysiology, Left ventricle, Cardiac pacemaker, Sinoatrial node, Transcutaneous pacing


Background A leadless intracardiac transcatheter pacing system has been designed to avoid the need for a pacemaker pocket and transvenous lead. Methods In a prospective multicenter study without controls, a transcatheter pacemaker was implanted in patients who had guideline-based indications for ventricular pacing. The analysis of the primary end points began when 300 patients reached 6 months of follow-up. The primary safety end point was freedom from system-related or procedure-related major complications. The primary efficacy end point was the percentage of patients with low and stable pacing capture thresholds at 6 months (≤2.0 V at a pulse width of 0.24 msec and an increase of ≤1.5 V from the time of implantation). The safety and efficacy end points were evaluated against performance goals (based on historical data) of 83% and 80%, respectively. We also performed a post hoc analysis in which the rates of major complications were compared with those in a control cohort of 2667 patients with transvenous pacemakers from six previously published studies. Results The device was successfully implanted in 719 of 725 patients (99.2%). The Kaplan-Meier estimate of the rate of the primary safety end point was 96.0% (95% confidence interval [CI], 93.9 to 97.3; P<0.001 for the comparison with the safety performance goal of 83%); there were 28 major complications in 25 of 725 patients, and no dislodgements. The rate of the primary efficacy end point was 98.3% (95% CI, 96.1 to 99.5; P<0.001 for the comparison with the efficacy performance goal of 80%) among 292 of 297 patients with paired 6-month data. Although there were 28 major complications in 25 patients, patients with transcatheter pacemakers had significantly fewer major complications than did the control patients (hazard ratio, 0.49; 95% CI, 0.33 to 0.75; P=0.001). Conclusions In this historical comparison study, the transcatheter pacemaker met the prespecified safety and efficacy goals; it had a safety profile similar to that of a transvenous system while providing low and stable pacing thresholds. (Funded by Medtronic; Micra Transcatheter Pacing Study number, NCT02004873 .).

Concepts: Implantable cardioverter-defibrillator, Point, Artificial pacemaker, Post-hoc analysis, Transcutaneous pacing, Goal, Medtronic, Earl Bakken


Background Cardiac pacemakers are limited by device-related complications, notably infection and problems related to pacemaker leads. We studied a miniaturized, fully self-contained leadless pacemaker that is nonsurgically implanted in the right ventricle with the use of a catheter. Methods In this multicenter study, we implanted an active-fixation leadless cardiac pacemaker in patients who required permanent single-chamber ventricular pacing. The primary efficacy end point was both an acceptable pacing threshold (≤2.0 V at 0.4 msec) and an acceptable sensing amplitude (R wave ≥5.0 mV, or a value equal to or greater than the value at implantation) through 6 months. The primary safety end point was freedom from device-related serious adverse events through 6 months. In this ongoing study, the prespecified analysis of the primary end points was performed on data from the first 300 patients who completed 6 months of follow-up (primary cohort). The rates of the efficacy end point and safety end point were compared with performance goals (based on historical data) of 85% and 86%, respectively. Additional outcomes were assessed in all 526 patients who were enrolled as of June 2015 (the total cohort). Results The leadless pacemaker was successfully implanted in 504 of the 526 patients in the total cohort (95.8%). The intention-to-treat primary efficacy end point was met in 270 of the 300 patients in the primary cohort (90.0%; 95% confidence interval [CI], 86.0 to 93.2, P=0.007), and the primary safety end point was met in 280 of the 300 patients (93.3%; 95% CI, 89.9 to 95.9; P<0.001). At 6 months, device-related serious adverse events were observed in 6.7% of the patients; events included device dislodgement with percutaneous retrieval (in 1.7%), cardiac perforation (in 1.3%), and pacing-threshold elevation requiring percutaneous retrieval and device replacement (in 1.3%). Conclusions The leadless cardiac pacemaker met prespecified pacing and sensing requirements in the large majority of patients. Device-related serious adverse events occurred in approximately 1 in 15 patients. (Funded by St. Jude Medical; LEADLESS II number, NCT02030418 .).

Concepts: Clinical trial, Heart, Right ventricle, Ventricle, Left ventricle, Cardiac pacemaker, Artificial pacemaker, Transcutaneous pacing


BACKGROUND: The purpose of this study was to evaluate the feasibility of the magnetic resonance (MR) conditional pacemaker (PM) system (Evia SR-T and DR-T with Safio S leads) under MR conditions. METHODS: Patients with standard PM indications and Evia PM were eligible for enrollment in this single center prospective non-randomized pilot study. Patients underwent MR of the brain and lower lumbar spine at 1.5 Tesla. Atrial (RA) und ventricular (RV) lead parameters (sensing, pacing threshold [PTH], pacing impedance) were assessed immediately before (baseline follow-up [FU]) and immediately after MRI (1st FU), after 1 month (2nd FU) and 3 months (3rd FU). The effect of MR on serious adverse device effect (SADE) free-rate, on atrial and ventricular sensing (AS/VS; mV) and atrial (RA) and ventricular (RV) pacing thresholds (PTH; V/0.4 ms) were investigated between baseline and 2nd FU. Continuous variables are expressed as mean +/- SD and were compared using paired Student’s t-test. A p < 0.05 was considered significant. RESULTS: Thirty-one patients were enrolled. One patient had to be excluded because of an enrollment violation. Therefore, data of 30 patients (female 12 [40%], age 73 +/- 12 years, dual chamber PM 15 [50%]) were included in this analysis. No MR related SADE occurred. Lead measurements were not statistically different between the baseline FU and the 2nd FU (AS/VS at baseline 3.2 +/- 2.1/15.0 +/- 6.0, at 2nd FU 3.2 +/- 2.1/14.9 +/- 6.5; p = ns. RA-PTH/RV-PTH at baseline 0.68 +/- 0.18/0.78 +/- 0.22, at 2nd FU 0.71 +/- 0.24/0.78 +/- 0.22; p = ns). The presence of the permanent pacemakers led to MR imaging artifacts on diffusion weighted sequences of the brain, but did not affect other sequences (e.g. FLAIR and T2 weighted spin-echo images). CONCLUSION: The use of the MR conditional Evia PM in a MR environment under predefined conditions is feasible. No MR related SADEs nor clinically relevant changes in device functions occurred.

Concepts: Brain, Statistics, Lumbar vertebrae, Nuclear magnetic resonance, Magnetic resonance imaging, Student's t-test, Artificial pacemaker, Transcutaneous pacing


BACKGROUND: The closed-loop stimulation (CLS) pacemaker algorithm is a system that permanently monitors the contractile state of the myocardium and converts the intrinsic information into rate regulation. The role that the CLS algorithm plays in the prevention of syncope recurrences still remains unclear. The aim of our prospective, randomised, single-bind, crossover study was to evaluate the effect of dual-chamber CLS in the prevention of syncope recurrence in patients with refractory vasovagal syncope (VVS) and a cardioinhibitory response to head-up tilt test (HUT) during a 36 months follow-up. METHOD SAND RESULTS: We studied 50 patients (mean age 53±5.1; 33 male) with the indication for permanent dual-chamber cardiac pacing for HUT-induced vasovagal cardioinhibitory syncope. They were randomised after 1 month of stabilisation period to CLS algorithm features programmed OFF or ON for 18 months each, using a crossover design. The number of syncopal and presyncopal episodes during active treatment was lower than those registered during no treatment (n syncopal episodes: 2 vs 15; p=0.007; n presincopal episodes: 5 vs 30; p = 0.004). Lead parameters remained stable over time, and there were no lead-related complications. CONCLUSIONS: Based on these 36 months follow-up data, it is concluded that dual-chamber CLS is an effective algorithm for preventing syncope recurrences in healthy patients with tilt-induced vasovagal cardioinhibitory syncope.

Concepts: Clinical trial, Crossover study, Clinical research, Repeated measures design, Transcutaneous pacing, Intention to treat analysis, Optimal design, Parallel study


Temporary pacemakers are used in a variety of critical care settings. These life-saving devices are reviewed in 2 major categories in this review: first, the insertion and management of epicardial pacemakers after and during cardiac surgery; and second, the insertion of transvenous temporary pacemakers for the emergent treatment of bradyarrhythmias. Temporary epicardial pacemakers are used routinely in patients recovering from cardiac surgery. Borrowing from advances in cardiac resynchronization therapy there are many theoretical and untested benefits to pacing the postoperative cardiac surgery patient. Temporary transvenous pacing is traditionally an emergency procedure to stabilize patients suffering from hemodynamically unstable bradyarrhythmia. We review the traditional and expanding use of transvenous pacemakers inside and outside the operating room.

Concepts: Patient, Hospital, Physician, Review, Tradition, Artificial pacemaker, Transcutaneous pacing, Bradycardia


The aim of this study is to develop a novel fully wireless and battery-less technology for cardiac pacing.

Concepts: In vivo, Psychometrics, Test, Transcutaneous pacing, Aptitude


Pacemaker leads, which connect the chest-wall generator of a pacemaker to the pacing electrode in the heart, are the “Achilles' heel” of pacing and defibrillation systems. Over time, they wear out, which often necessitates their risky removal and replacement. In addition, transvenous leads provide a portal into the vascular space, which increases the risk of infection. Patients with traditional pacemakers and defibrillators are also susceptible to hematomas and pocket infections in the chest wall where the generators lie. Thus, a self-contained leadless pacemaker that can be placed directly into the heart is an appealing prospect. Reports of two recent nonrandomized, . . .

Concepts: Risk, Implantable cardioverter-defibrillator, Asystole, Cardiac electrophysiology, Defibrillation, Artificial pacemaker, Transcutaneous pacing, Fibrillation


The human sinoatrial node (SAN) efficiently maintains heart rhythm even under adverse conditions. However, the specific mechanisms involved in the human SAN’s ability to prevent rhythm failure, also referred to as its robustness, are unknown. Challenges exist because the three-dimensional (3D) intramural structure of the human SAN differs from well-studied animal models, and clinical electrode recordings are limited to only surface atrial activation. Hence, to innovate the translational study of human SAN structural and functional robustness, we integrated intramural optical mapping, 3D histology reconstruction, and molecular mapping of the ex vivo human heart. When challenged with adenosine or atrial pacing, redundant intranodal pacemakers within the human SAN maintained automaticity and delivered electrical impulses to the atria through sinoatrial conduction pathways (SACPs), thereby ensuring a fail-safe mechanism for robust maintenance of sinus rhythm. During adenosine perturbation, the primary central SAN pacemaker was suppressed, whereas previously inactive superior or inferior intranodal pacemakers took over automaticity maintenance. Sinus rhythm was also rescued by activation of another SACP when the preferential SACP was suppressed, suggesting two independent fail-safe mechanisms for automaticity and conduction. The fail-safe mechanism in response to adenosine challenge is orchestrated by heterogeneous differences in adenosine A1 receptors and downstream GIRK4 channel protein expressions across the SAN complex. Only failure of all pacemakers and/or SACPs resulted in SAN arrest or conduction block. Our results unmasked reserve mechanisms that protect the human SAN pacemaker and conduction complex from rhythm failure, which may contribute to treatment of SAN arrhythmias.

Concepts: Cardiology, Heart, Cardiac electrophysiology, Cardiac anatomy, Cardiac pacemaker, Sinoatrial node, Transcutaneous pacing, Electrical conduction system of the heart