Discover the most talked about and latest scientific content & concepts.

Concept: Solar eclipse


This article reports on the near-surface atmospheric response at the High Arctic site of Svalbard, latitude 78° N, as a result of abrupt changes in solar insolation during the 20 March 2015 equinox total solar eclipse and notifies the atmospheric science community of the availability of a rare dataset. Svalbard was central in the path of totality, and had completely clear skies. Measurements of shaded air temperature and atmospheric pressure show only weak, if any, responses to the reduced insolation. A minimum in the air temperature at 1.5 m above the ground occurred starting 2 min following the end of totality, though this drop was only slightly beyond the observed variability for the midday period. Eclipse-produced variations in surface pressure, if present, were less than 0.3 hPa.This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’.

Concepts: Earth, Sun, Lunar eclipse, Mercury, Eclipse, Solar eclipse, Saros cycle, Eclipse cycle


Here, we analyse high-frequency (1 min) surface air temperature, mean sea-level pressure (MSLP), wind speed and direction and cloud-cover data acquired during the solar eclipse of 20 March 2015 from 76 UK Met Office weather stations, and compare the results with those from 30 weather stations in the Faroe Islands and 148 stations in Iceland. There was a statistically significant mean UK temperature drop of 0.83±0.63°C, which occurred over 39 min on average, and the minimum temperature lagged the peak of the eclipse by about 10 min. For a subset of 14 (16) relatively clear (cloudy) stations, the mean temperature drop was 0.91±0.78 (0.31±0.40)°C but the mean temperature drops for relatively calm and windy stations were almost identical. Mean wind speed dropped significantly by 9% on average during the first half of the eclipse. There was no discernible effect of the eclipse on the wind-direction or MSLP time series, and therefore we can discount any localized eclipse cyclone effect over Britain during this event. Similar changes in air temperature and wind speed are observed for Iceland, where conditions were generally clearer, but here too there was no evidence of an eclipse cyclone; in the Faroes, there was a much more muted meteorological signature.This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’.

Concepts: Earth, Weather, Atmospheric pressure, Denmark, Scandinavia, Eclipse, Faroe Islands, Solar eclipse


There is a fascinating tradition of depicting solar eclipses in Western art, although these representations have changed over time. Eclipses have often been an important feature of Christian iconography, but valued as much for their biblical significance as for the splendour of the physical event. However, as Western culture passed through the Renaissance and Enlightenment the depictions of eclipses came to reflect new astronomical knowledge and a thirst for rational learning well beyond the confines of the church and other elites. Artists also played a surprisingly important role in helping scientists in the nineteenth century understand and record the full phenomena of an eclipse, even as the advent of photography also came to solve a number of scientific puzzles. In the most recent century, artists have responded to eclipses with symbolism, abstraction and playfulness.This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’.

Concepts: Earth, Culture, Europe, Lunar eclipse, Western culture, Renaissance, Eclipse, Solar eclipse


The solar corona, the tenuous outer atmosphere of the Sun, is orders of magnitude hotter than the solar surface. This ‘coronal heating problem’ requires the identification of a heat source to balance losses due to thermal conduction, radiation and (in some locations) convection. The review papers in this Theo Murphy meeting issue present an overview of recent observational findings, large- and small-scale numerical modelling of physical processes occurring in the solar atmosphere and other aspects which may affect our understanding of the proposed heating mechanisms. At the same time, they also set out the directions and challenges which must be tackled by future research. In this brief introduction, we summarize some of the issues and themes which reoccur throughout this issue.

Concepts: Sun, Heat, Solar wind, Solar flare, Corona, Chromosphere, Solar eclipse, Coronal loop


A camera obscura-type viewer based on pinhole optics, with the apertures being the holes in a commercial snack biscuit (or cracker), produces interesting and easily obtainable projected images, as demonstrated during the 2017 solar eclipse.

Concepts: Book of Optics, Photography, Photographic lens, Eclipse, F-number, Shen Kuo, Pinhole camera, Solar eclipse


Unprotected and prolonged exposure to ultraviolet (UV) light from sunlight, lasers, and arc welding leads to outer retinal damage. The photoreceptors and retinal pigment epithelium located in the posterior pole are particularly susceptible to this radiation. Classically known as solar retinopathy, this disorder frequently affects young individuals who have clear lenses and a propensity toward observing solar eclipses. Various imaging techniques aid the clinician in diagnosis, even if patients cannot recall an exposure event. By far the most utilized technique is optical coherence tomography, which, in tandem with fluorescein angiography, and fundus autoflourescence, is crucial in ruling out other conditions. Fortunately, the prognosis of acute UV retinopathy is favorable, as most cases fully recover; however, a significant percentage of patients suffer from chronic sequelae: reduced acuity and lifelong central/paracentral scotomas. Thus, education towards understanding UV exposure risks, coupled with either abstinence or proper eye protection, is critical in preventing macular damage. We outline the various etiologies responsible for UV induced retinopathy, describe the limited treatments available, and provide recommendations to minimize the potential devastating ophthalmic consequences as our society increases its reliance on UV-emitting technology and further engages in solar eclipse viewing.

Concepts: Ultraviolet, Sun, Sunlight, Retina, Eye, Ophthalmology, Eclipse, Solar eclipse


Animals that use astronomical cues to orientate must make continuous adjustment to account for temporal changes in azimuth caused by Earth’s rotation. For example, the Monarch butterfly possesses a time-compensated sun compass dependent upon a circadian clock in the antennae. The amphipod Talitrus saltator possesses both a sun compass and a moon compass. We reasoned that the time-compensated compass mechanism that enables solar orientation of T. saltator is located in the antennae, as is the case for Monarch butterflies. We examined activity rhythms and orientation of sandhoppers with antennae surgically removed, or unilaterally occluded with black paint. Removing or painting the antennae did not affect daily activity rhythms or competence to orientate using the sun. However, when tested at night these animals were unable to orientate correctly to the moon. We subsequently measured circadian gene expression in the antennae and brain of T. saltator and show the clock genes period and cryptochrome 2 are rhythmically expressed in both tissues, reminiscent of other arthropods known to possess antennal clocks. Together, our behavioural and molecular data suggest that, T. saltator has anatomically discrete lunar and solar orientation apparatus; a sun compass, likely located in the brain and a moon compass in the antennae.

Concepts: Oxygen, Earth, Sun, Crustacean, Solar System, Moon, Period, Solar eclipse


Measurements of atmospheric electrical and standard meteorological parameters were made at coastal and inland sites in southern England during the 20 March 2015 partial solar eclipse. Clear evidence of a reduction in air temperature resulting from the eclipse was found at both locations, despite one of them being overcast during the entire eclipse. The reduction in temperature was expected to affect the near-surface electric field (potential gradient (PG)) through a reduction in turbulent transfer of space charge. No such effect could be unambiguously confirmed, however, with variability in PG and air-Earth current during the eclipse being comparable to pre- and post-eclipse conditions. The already low solar radiation for this latitude, season and time of day was likely to have contributed to the reduced effect of the eclipse on atmospheric electricity through boundary layer stability. The absence of a reduction in mean PG shortly after time of maximum solar obscuration, as observed during eclipses at lower geomagnetic latitude, implied that there was no significant change in atmospheric ionization from cosmic rays above background variability. This finding was suggested to be due to the relative importance of cosmic rays of solar and galactic origin at geomagnetic mid-latitudes.This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’.

Concepts: Earth, Sun, Lunar eclipse, Mercury, Eclipse, Ecliptic, Solar eclipse, Saros cycle


The behaviour of remotely sensed land surface temperatures (LSTs) from the spinning-enhanced visible and infrared imager (SEVIRI) during the total solar eclipse of 20 March 2015 is analysed over Europe. LST is found to drop by up to several degrees Celcius during the eclipse, with the minimum LST occurring just after the eclipse mid-point (median=+1.5 min). The drop in LST is typically larger than the drop in near-surface air temperatures reported elsewhere, and correlates with solar obscuration (r=-0.47; larger obscuration = larger LST drop), eclipse duration (r=-0.62; longer duration = larger LST drop) and time (r=+0.37; earlier eclipse = larger LST drop). Locally, the LST drop is also correlated with vegetation (up to r=+0.6), with smaller LST drops occurring over more vegetated surfaces. The LSTs at locations near the coast and at higher elevation are also less affected by the eclipse. This study covers the largest area and uses the most observations of eclipse-induced surface temperature drops to date, and is the first full characterization of satellite LST during an eclipse (known to the author). The methods described could be applied to Geostationary Operational Environmental Satellite (GOES) LST data over North America during the August 2017 total solar eclipse.This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’.

Concepts: Earth, Temperature, Lunar eclipse, Celsius, Absolute zero, Thermodynamic temperature, Eclipse, Solar eclipse


Near-surface air temperature (NSAT) anomalies during the 20 March 2015 solar eclipse are investigated at 266 UK sites, using operational data. The high density of observing sites, together with the wide range of ambient meteorological conditions, provided an unprecedented opportunity for analysis of the spatial variability of NSAT anomalies under relatively uniform eclipse conditions. Anomalies ranged from -0.03°C to -4.23°C (median -1.02°C). The maximum (negative) anomaly lagged the maximum obscuration by 15 min on average. Cloud cover impacted strongly on NSAT anomalies, with larger anomalies in clear-sky situations (p<0.0001). Weaker, but statistically significant, correlations were found with wind speed (larger anomalies in weaker winds), proximity to coast (larger anomalies at inland sites), topography (larger anomalies in topographical low points) and land cover (larger anomalies over vegetated surfaces). In this mid-morning eclipse, the topographical influences on NSAT anomalies were apparently dominated by variations in residual nocturnal inversion strength, as suggested by significant correlations between post-sunrise temperature and NSAT anomaly at clear-sky sites (larger negative anomalies with lower post-sunrise temperatures). The largest NSAT anomaly occurred at a coastal site where flow transitioned from onshore to offshore during the eclipse, in a situation with large coastal temperature gradients associated with antecedent nocturnal cooling.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'.

Concepts: Earth, Temperature, Lunar eclipse, Eclipse, Solar eclipse, Saros cycle, Eclipse cycle, Eclipses