Discover the most talked about and latest scientific content & concepts.

Concept: Software design


User-centred design (UCD) is a type of user interface design in which the needs and desires of users are taken into account at each stage of the design process for a service or product; often for software applications and websites. Its goal is to facilitate the design of software that is both useful and easy to use. To achieve this, you must characterise users' requirements, design suitable interactions to meet their needs, and test your designs using prototypes and real life scenarios.For bioinformatics, there is little practical information available regarding how to carry out UCD in practice. To address this we describe a complete, multi-stage UCD process used for creating a new bioinformatics resource for integrating enzyme information, called the Enzyme Portal ( This freely-available service mines and displays data about proteins with enzymatic activity from public repositories via a single search, and includes biochemical reactions, biological pathways, small molecule chemistry, disease information, 3D protein structures and relevant scientific literature.We employed several UCD techniques, including: persona development, interviews, ‘canvas sort’ card sorting, user workflows, usability testing and others. Our hope is that this case study will motivate the reader to apply similar UCD approaches to their own software design for bioinformatics. Indeed, we found the benefits included more effective decision-making for design ideas and technologies; enhanced team-working and communication; cost effectiveness; and ultimately a service that more closely meets the needs of our target audience.

Concepts: Protein, Design, Graphic design, User interface, Usability, Experience design, Software design, Web design


Energy intensive and chemical routes predominately govern modern dental material fabrication involving complex physicochemical approaches. Current interest in dental material design is shifting towards biomineralization method and green chemistry synthesis to support oral tissue biocompatibility and oropharmacology. This review article describes the context of biophysical approaches based on development in nanoengineering to design advance nanomaterials for clinical dentistry. We particularly focus on approaches governing surface texture and hierarchical assembly emphasis based on micro-nanoscale tooth anatomy. Further, this article provides an overview about the merit of micro-nanoscale material design techniques exchanging the traditional dental material. In this context, top-down and bottom-up approaches involving biomimetic nanoengineering route, opportunities and challenges are discussed.

Concepts: Chemistry, Chemical substance, Engineering, Materials science, Supramolecular chemistry, Top-down and bottom-up design, Software development process, Software design


The engineering of large-scale decentralised systems requires sound methodologies to guarantee the attainment of the desired macroscopic system-level behaviour given the microscopic individual-level implementation. While a general-purpose methodology is currently out of reach, specific solutions can be given to broad classes of problems by means of well-conceived design patterns. We propose a design pattern for collective decision making grounded on experimental/theoretical studies of the nest-site selection behaviour observed in honeybee swarms (Apis mellifera). The way in which honeybee swarms arrive at consensus is fairly well-understood at the macroscopic level. We provide formal guidelines for the microscopic implementation of collective decisions to quantitatively match the macroscopic predictions. We discuss implementation strategies based on both homogeneous and heterogeneous multiagent systems, and we provide means to deal with spatial and topological factors that have a bearing on the micro-macro link. Finally, we exploit the design pattern in two case studies that showcase the viability of the approach. Besides engineering, such a design pattern can prove useful for a deeper understanding of decision making in natural systems thanks to the inclusion of individual heterogeneities and spatial factors, which are often disregarded in theoretical modelling.

Concepts: Scientific method, Decision making, Mathematics, Design, Design pattern, Software design, Pattern language


To describe the rationale, design and methodology for a trial of three novel interventions developed to improve sedation-analgesia quality in adult intensive care units (ICUs).

Concepts: Design, Software design, Mind map


Community health workers are reemerging as an essential component of health systems in low-income countries. However, there are concerns that unless they are adequately supported, their motivation and performance will be suboptimal. mHealth presents an opportunity to improve support for community health workers; however, most interventions to date have been designed through a top-down approach, rarely involve the end user, and have not focused on motivation.

Concepts: Health care, Healthcare, Support, Top-down and bottom-up design, Software design, User


Involving users through participation in healthcare service and environment design is growing. Existing approaches and toolkits for practitioners and researchers are often paper based involving workshops and other more traditional design approaches such as paper prototyping. The advent of digital technology provides the opportunity to explore new platforms for user participation. This paper presents results from three studies that used a bespoke situated user participation digital kiosk, engaging 33 users in investigating healthcare environment design. The studies, from primary and secondary care settings, allowed participant feedback on each environment and proved a novel, engaging “21st century” way to participate in the appraisal of the design process. The results point toward this as an exciting and growing area of research in developing not just a new method of user participation but also the technology that supports it. Limitations were noted in terms of data validity and engagement with the device. To guide the development of user participation using similar situated digital devices, key lessons and reflections are presented.

Concepts: Participation, Design, User-centered design, Software design


Footpaths provide an integral component of our urban environments and have the potential to act as safe places for people and the focus for community life. Despite this, the approach to designing footpaths that are safe while providing this sense of place often occurs in silos. There is often very little consideration given to how designing for sense of place impacts safety and vice versa. The aim of this study was to use a systems analysis and design framework to develop a design template for an ‘ideal’ footpath system that embodies both safety and sense of place. This was achieved through using the first phase of the Cognitive Work Analysis framework, Work Domain Analysis, to specify a model of footpaths as safe places for pedestrians. This model was subsequently used to assess two existing footpath environments to determine the extent to which they meet the design requirements specified. The findings show instances where the existing footpaths both meet and fail to meet the design requirements specified. Through utilising a systems approach for footpaths, this paper has provided a novel design template that can inform new footpath design efforts or be used to evaluate the extent to which existing footpaths achieve their safety and sense of place requirements.

Concepts: Systems theory, Systems engineering, Debut albums, Walkability, Place, Urban design, Software design, Sense of place


A quantitative structure-activity (QSAR) model has been developed for enriched tubulin inhibitors, which were retrieved from sequence similarity searches and applicability domain analysis. Using partial least square (PLS) method and leave-one-out (LOO) validation approach, the model was generated with the correlation statistics of [Formula: see text] and [Formula: see text] of 0.68 and 0.69, respectively. The present study indicates that topological descriptors, viz. BIC, CH_3_C, IC, JX and Kappa_2 correlate well with biological activity. ADME and toxicity (or ADME/T) assessment showed that out of 260 molecules, 255 molecules successfully passed the ADME/T assessment test, wherein the drug-likeness attributes were exhibited. These results showed that topological indices and the colchicine binding domain directly influence the aetiology of helminthic infections. Further, we anticipate that our model can be applied for guiding and designing potential anthelmintic inhibitors.

Concepts: DNA, Biology, Correlation and dependence, Model, Das Model, Unified Modeling Language, Software design, Domain analysis


Young people with asthma often lack engagement in self-management. Smartphone apps offer an attractive, immediate method for obtaining asthma information and self-management support. In this research we developed an evidence-based asthma app tailored to young people’s needs, created using a participatory design approach to optimise user-engagement. This paper describes the participatory design process.

Concepts: Asthma, Design, User-centered design, Maslow's hierarchy of needs, Participatory design, Software design


The stepped-wedge cluster randomised trial design has received substantial attention in recent years. Although various extensions to the original design have been proposed, no guidance is available on the design of stepped-wedge cluster randomised trials with interim analyses. In an individually randomised trial setting, group sequential methods can provide notable efficiency gains and ethical benefits. We address this by discussing how established group sequential methodology can be adapted for stepped-wedge designs.

Concepts: Randomized controlled trial, Design, Software design