Discover the most talked about and latest scientific content & concepts.

Concept: Smoke


Despite public awareness that tobacco secondhand smoke (SHS) is harmful, many people still assume that marijuana SHS is benign. Debates about whether smoke-free laws should include marijuana are becoming increasingly widespread as marijuana is legalized and the cannabis industry grows. Lack of evidence for marijuana SHS causing acute cardiovascular harm is frequently mistaken for evidence that it is harmless, despite chemical and physical similarity between marijuana and tobacco smoke. We investigated whether brief exposure to marijuana SHS causes acute vascular endothelial dysfunction.

Concepts: Smoking, Tobacco, Tobacco smoking, Law, Endothelium, Endothelial dysfunction, Cannabis, Smoke


Development of physiologically relevant test methods to analyse potential irritant effects to the respiratory tract caused by e-cigarette aerosols is required. This paper reports the method development and optimisation of an acute in vitro MTT cytotoxicity assay using human 3D reconstructed airway tissues and an aerosol exposure system. The EpiAirway™ tissue is a highly differentiated in vitro human airway culture derived from primary human tracheal/bronchial epithelial cells grown at the air-liquid interface, which can be exposed to aerosols generated by the VITROCELL® smoking robot. Method development was supported by understanding the compatibility of these tissues within the VITROCELL® system, in terms of airflow (L/min), vacuum rate (mL/min) and exposure time. Dosimetry tools (QCM) were used to measure deposited mass, to confirm the provision of e-cigarette aerosol to the tissues. EpiAirway™ tissues were exposed to cigarette smoke and aerosol generated from two commercial e-cigarettes for up to 6h. Cigarette smoke reduced cell viability in a time dependent manner to 12% at 6h. E-cigarette aerosol showed no such decrease in cell viability and displayed similar results to that of the untreated air controls. Applicability of the EpiAirway™ model and exposure system was demonstrated, showing little cytotoxicity from e-cigarette aerosol and different aerosol formulations when compared directly with reference cigarette smoke, over the same exposure time.

Concepts: Smoking, Tobacco, Cigarette, Nicotine, Cytotoxicity, Electronic cigarette, Smoke, Aerosol


Analyses of (131)I, (137)Cs and (134)Cs in airborne aerosols were carried out in daily samples in Vilnius, Lithuania after the Fukushima accident during the period of March-April, 2011. The activity concentrations of (131)I and (137)Cs ranged from 12 μBq/m(3) and 1.4 μBq/m(3) to 3700 μBq/m(3) and 1040 μBq/m(3), respectively. The activity concentration of (239,240)Pu in one aerosol sample collected from 23 March to 15 April, 2011 was found to be 44.5 nBq/m(3). The two maxima found in radionuclide concentrations were related to complicated long-range air mass transport from Japan across the Pacific, the North America and the Atlantic Ocean to Central Europe as indicated by modelling. HYSPLIT backward trajectories and meteorological data were applied for interpretation of activity variations of measured radionuclides observed at the site of investigation. (7)Be and (212)Pb activity concentrations and their ratios were used as tracers of vertical transport of air masses. Fukushima data were compared with the data obtained during the Chernobyl accident and in the post Chernobyl period. The activity concentrations of (131)I and (137)Cs were found to be by 4 orders of magnitude lower as compared to the Chernobyl accident. The activity ratio of (134)Cs/(137)Cs was around 1 with small variations only. The activity ratio of (238)Pu/(239,240)Pu in the aerosol sample was 1.2, indicating a presence of the spent fuel of different origin than that of the Chernobyl accident.

Concepts: United States, Atlantic Ocean, Europe, Meteorology, Smoke, Radiation poisoning, Radioactive contamination, Financial ratio


Increased cannabis potency has renewed concerns that secondhand exposure to cannabis smoke can produce positive drug tests. A systematic study was conducted of smoke exposure on drug-free participants. Six experienced cannabis users smoked cannabis cigarettes (5.3% THC in Session 1 and 11.3% THC in Sessions 2 and 3) in a sealed chamber. Six non-smokers were seated with smokers in an alternating manner. Sessions 1 and 2 were conducted with no ventilation and ventilation was employed in Session 3. Non-smoking participant specimens (collected 0-34 h) were analyzed with four immunoassays at different cutoff concentrations (20, 50, 75 and 100 ng/mL) and by GC-MS (LOQ = 0.75 ng/mL). No presumptive positives occurred for non-smokers at 100 and 75 ng/mL; a single positive occurred at 50 ng/mL; and multiple positives occurred at 20 ng/mL. Maximum THCCOOH concentrations by GC-MS for non-smokers ranged from 1.3 to 57.5 ng/mL. THCCOOH concentrations generally increased with THC potency, but room ventilation substantially reduced exposure levels. These results demonstrate that extreme cannabis smoke exposure can produce positive urine tests at commonly utilized cutoff concentrations. However, positive tests are likely to be rare, limited to the hours immediately post-exposure, and occur only under environmental circumstances where exposure is obvious.

Concepts: Participation, Smoking, Cannabis, Smoke, Drug test


Smoke taint in wines from bushfire smoke exposure has become a concern for wine producers. Smoke taint compounds are primarily derived from pyrolysis of the lignin component of fuels. This work examined the influence of the lignin composition of pyrolysed vegetation on the types of putative smoke taint compounds that accrue in wines. At veraison, Merlot vines were exposed to smoke generated from five vegetation types with differing lignin composition. Smoke was generated under pyrolysis conditions that simulated bushfire temperature profiles. Lignin and smoke composition of each fuel type along with putative smoke taint compounds in wines were determined. The results showed that, regardless of fuel type, the commonly reported guaiacyl lignin derived smoke taint compounds, guaiacol and 4-methylguaiacol, represented about 20% of the total phenols in wines. Quantitatively, syringyl lignin derived compounds dominated the total phenol pools in both free and bound forms. The contributions of p-hydroxyphenyls were generally similar to the guaiacyl sources. A further unexpected outcome of the study was that pine smoke affected wines had significantly elevated levels of syringols compared to the controls although pine fuel and its smoke emission lacked syringyl products.

Concepts: Lignin, Smoke, Wine, Phenols, Vanillin, Combustion, Grape, Guaiacol


Salmonella typhimurium strains TA98 and TA100 were used to assess the mutagenic potential of the aerosol from a commercially available, rechargeable, closed system electronic-cigarette. Results obtained were compared to those for the mainstream smoke from a Kentucky reference (3R4F) cigarette. Two different test matrices were assessed. Aerosol generated from the e-cigarette was trapped on a Cambridge filter pad, eluted in DMSO and compared to cigarette smoke total particulate matter (TPM), which was generated in the same manner for mutagenicity assessment in the Salmonella assay. Fresh e-cigarette and cigarette smoke aerosols were generated on the Vitrocell(®) VC 10 smoking robot and compared using a modified scaled-down 35mm air agar interface (AAI) methodology. E-cigarette aerosol collected matter (ACM) was found to be non-mutagenic in the 85mm plate incorporation Ames assay in strains TA98 and TA100 conducted in accordance with OECD 471, when tested up to 2400μg/plate. Freshly generated e-cigarette aerosol was also found to be negative in both strains after an AAI aerosol exposure, when tested up to a 1L/min dilution for up to 3h. Positive control responses were observed in both strains, using benzo[a]pyrene, 2-nitrofluorene, sodium azide and 2-aminoanthracene in TA98 and TA100 in the presence and absence of metabolic activation respectively. In contrast, cigarette smoke TPM and aerosol from 3R4F reference cigarettes were found to be mutagenic in both tester strains, under comparable test conditions to that of e-cigarette exposure. Limited information exists on the mutagenic activity of captured e-cigarette particulates and whole aerosol AAI approaches. With the lower toxicant burden of e-cigarette aerosols compared to cigarette smoke, it is clear that a more comprehensive Ames package of data should be generated when assessing e-cigarettes, consisting of the standard OECD-five, TA98, TA100, TA1535, TA1537 (or TA97) and E. coli (or TA102). In addition, TA104 which is more sensitive to the carbonyl based compounds found in e-cigarette aerosols under dry-wicking conditions may also prove a useful addition in a testing battery. Regulatory standard product testing approaches as used in this study will become important when determining whether e-cigarette aerosols are in fact less biologically active than cigarette smoke, as this study suggests. Future studies should be supported by in vitro dosimetry approaches to draw more accurate comparisons between cigarette smoke, e-cigarette aerosol exposure and human use.

Concepts: Smoking, Tobacco, Cigarette, Particulate, Visibility, Smoke, Aerosol, Global dimming


The most destructive wildfire experienced in Spain since 2004 occurred close to Valencia in summer 2012. A total of 48.500ha were affected by two wildfires, which were mostly active during 29-30 June. The fresh smoke plume was detected at the Burjassot measurement station simultaneously to a severe dust episode. We propose an empirical method to evaluate the dust and smoke mixing and its impact on the microphysical and optical properties. For this, we combine direct-sun measurements with a Cimel CE-318 sun-photometer with an inversion methodology, and the Mie theory to derive the column-integrated size distribution, single scattering albedo (SSA) and asymmetry parameter (g). The mixing of dust and smoke greatly increased the aerosol load and modified the background aerosol properties. Mineral dust increased the aerosol optical depth (AOD) up to 1, while the smoke plume caused an extreme AOD peak of 8. The size distribution of the mixture was bimodal, with a fine and coarse modes dominated by the smoke particles and mineral dust, respectively. The SSA and g for the dust-smoke mixture show a marked sensitivity on the smoke mixing-ratio, mainly at longer wavelengths. Mineral dust and smoke share a similar SSA at 440nm (~0.90), but with opposite spectral dependency. A small dust contribution to the total AOD substantially affects the SSA of the mixture, and also SSA at 1020nm increases from 0.87 to 0.95. This leads to a different spectral behaviour of SSA that changes from positive (smoke plume) to negative (dust), depending on the dust and smoke mixing-ratio.

Concepts: Scientific method, Scattering, Spain, Particulate, Visibility, Smoke, Albedo, Scattering, absorption and radiative transfer


The impact of secondhand marijuana smoke exposure on children is unknown. New methods allow detection of secondhand marijuana smoke in children.

Concepts: Detection theory, Smoke


Cannabis (marijuana) smoke and tobacco smoke contain many of the same potent carcinogens, but a critical-yet unresolved-medical and public-health issue is whether cannabis smoking might facilitate the development of lung cancer. The current study aimed to assess the risk of lung cancer among young marijuana users.

Concepts: Epidemiology, Cancer, Lung cancer, Smoking, Tobacco, Tobacco smoking, Smoke, Vaporizer


Particle transport phenomena in the deep alveolated airways of the lungs (i.e. pulmonary acinus) govern deposition outcomes following inhalation of hazardous or pharmaceutical aerosols. Yet, there is still a dearth of experimental tools for resolving acinar particle dynamics and validating numerical simulations. Here, we present a true-scale experimental model of acinar structures consisting of bifurcating alveolated ducts that capture breathing-like wall motion and ensuing respiratory acinar flows. We study experimentally captured trajectories of inhaled polydispersed smoke particles (0.2 to 1 μm in diameter), demonstrating how intrinsic particle motion, i.e. gravity and diffusion, is crucial in determining dispersion and deposition of aerosols through a streamline crossing mechanism, a phenomenon paramount during flow reversal and locally within alveolar cavities. A simple conceptual framework is constructed for predicting the fate of inhaled particles near an alveolus by identifying capture and escape zones and considering how streamline crossing may shift particles between them. In addition, we examine the effect of particle size on detailed deposition patterns of monodispersed microspheres between 0.1-2 μm. Our experiments underline local modifications in the deposition patterns due to gravity for particles ≥0.5 μm compared to smaller particles, and show good agreement with corresponding numerical simulations.

Concepts: Particle physics, Respiratory physiology, Experiment, Respiratory system, Inhalation, Smoke, Acinus, Alveolus