SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Pneumococcal vaccine

2

After the introduction of pneumococcal conjugate vaccines, the incidence of pneumococcal infections due to meropenem-resistant serotype 15A-ST63 strains increased in Japan. By using whole-genome sequencing and comparing sequences with those of clones from the United Kingdom, the United States, and Canada, we clarified the traits of the serotype 15A-ST63 clone. Our analysis revealed that the meropenem-resistant serotype 15A-ST63 strains from Japan originated from meropenem-susceptible strains from Japan. Recombination site prediction analysis showed that the meropenem-resistant strain-specific recombination regions included the pbp1a and pbp2b regions. A detailed analysis of the composition of these genes indicated that resistance seems to be caused by pbp1a recombination. The pbp1a gene in meropenem-resistant isolates was identical to that in multidrug (including meropenem)-resistant serotype 19A-ST320 pneumococci, which have spread in the United States. The global spread of pneumococci of this lineage is noteworthy because serotype 15A is not included in the currently used 13-valent pneumococcal conjugate vaccine.

Concepts: Microbiology, Pneumonia, Streptococcus pneumoniae, Streptococcus, United Kingdom, Pneumococcal conjugate vaccine, Pneumococcal vaccine, Pneumococcal polysaccharide vaccine

2

Individuals with certain chronic medical conditions are at higher risk of developing pneumonia and pneumococcal disease than those without. Using data from the Community-Acquired Pneumonia Immunization Trial in Adults (CAPiTA), this post hoc analysis assessed the efficacy of the 13-valent pneumococcal conjugate vaccine (PCV13) in adults aged ≥65 years with at-risk conditions.

Concepts: Medicine, Death, Pneumonia, Streptococcus pneumoniae, Vaccine, Pneumococcal conjugate vaccine, Pneumococcal vaccine, Pneumococcal polysaccharide vaccine

2

The capsular polysaccharide (CPS) of Streptococcus pneumoniae is characterized by its diversity, as it has over 95 known serotypes, and the variation in its thickness as it surrounds an organism. While within-host effects of CPS have been studied in detail, there is no information about its contribution to host-to-host transmission. In this study, we used an infant mouse model of intralitter transmission, together with isogenic capsule switch and cps promoter switch constructs, to explore the effects of CPS type and amount. The determining factor in the transmission rate in this model is the number of pneumococci shed in nasal secretions by colonized hosts. Two of seven capsule switch constructs showed reduced shedding. These constructs were unimpaired in colonization and expressed capsules similar in size to those of the wild-type strain. A cps promoter switch mutant expressing ~50% of wild-type amounts of CPS also displayed reduced shedding without a defect in colonization. Since shedding from the mucosal surface may require escape from mucus entrapment, a mucin-binding assay was used to compare capsule switch and cps promoter switch mutants. The CPS type or amount constructs that shed poorly were bound more robustly by immobilized mucin. These capsule switch and cps promoter switch constructs with increased mucin-binding affinity and reduced shedding also had lower rates of pup-to-pup transmission. Our results demonstrate that CPS type and amount affect transmission dynamics and may contribute to the marked differences in prevalence among pneumococcal types.IMPORTANCEStreptococcus pneumoniae, a leading cause of morbidity and mortality, is readily transmitted, especially among young children. Its structurally and antigenically diverse capsular polysaccharide is the target of currently licensed pneumococcal vaccines. Epidemiology studies show that only a subset of the >95 distinct serotypes are prevalent in the human population, suggesting that certain capsular polysaccharide types might be more likely to be transmitted within the community. Herein, we used an infant mouse model to show that both capsule type and amount are important determinants in the spread of pneumococci from host to host. Transmission rates correlate with those capsule types that are better at escaping mucus entrapment, a key step in exiting the host upper respiratory tract. Hence, our study provides a better mechanistic understanding of why certain pneumococcal serotypes are more common in the human population.

Concepts: Epidemiology, Pneumonia, Streptococcus pneumoniae, Streptococcus, Pneumococcal vaccine, Respiratory system, Upper respiratory tract, Mucus

2

In Japan, the clinical characteristics and recent serotype distribution among adult patients of invasive pneumococcal disease (IPD) have not been fully investigated since the introduction of the pneumococcal conjugate vaccine (PCV) in children. From November 2010, PCV7 was encouraged by an official program, funded by government, subsequently included in the routine schedule in April 2013, and replaced with a PCV13 in November 2013.

Concepts: Microbiology, Pneumonia, Streptococcus pneumoniae, Pneumococcal infection, Pneumococcal conjugate vaccine, Pneumococcal vaccine, Pneumococcal polysaccharide vaccine

2

In 2010 the US Advisory Committee on Immunization Practices recommended that the seven-valent pneumococcal conjugate vaccine (PCV7) be replaced by the thirteen-valent version (PCV13), which provides protection against six additional serotypes of the bacterium Streptococcus pneumoniae. The higher price of PCV13, compared to PCV7, may be a concern for funding agencies and payers, as has been the case with other new vaccines. This study estimated the budgetary impact on both public and private US insurance payers of the routine use of PCV13 instead of PCV7 from 2010 to 2019. Implementing the PCV13 vaccine is projected to cost public and private payers $3.5 billion and $2.6 billion, respectively, more than PCV7. However, PCV13 is expected to provide net cost savings of $6.1 billion and $4.2 billion, respectively, to those payers during the ten-year period by preventing pneumococcal disease and its associated costs. An additional $1.7 billion in cost savings would be realized for uninsured patients, whose costs ultimately fall on those payers. Despite its higher price, compared to PCV7, this new vaccine is expected to provide payers with substantial net budgetary savings.

Concepts: Pneumonia, Streptococcus pneumoniae, Vaccine, Streptococcus, Pneumococcal conjugate vaccine, Pneumococcal vaccine, Pneumococcal polysaccharide vaccine, Vaccines

2

Two decades ago, the Emerging Infections Program of the US Centers for Disease Control and Prevention implemented what seemed like a simple yet novel idea: a population- and laboratory-based surveillance system designed to identify and characterize invasive bacterial infections, including those caused by Streptococcus pneumoniae. This system, known as Active Bacterial Core surveillance, has since served as a flexible platform for following trends in invasive pneumococcal disease and studying vaccination as the most effective method for prevention. We report the contributions of Active Bacterial Core surveillance to every pneumococcal vaccine policy decision in the United States during the past 20 years.

Concepts: Microbiology, Pneumonia, Streptococcus pneumoniae, Streptococcus, Pneumococcal conjugate vaccine, Pneumococcal vaccine, Otitis media, Meningitis

2

Acute otitis media (AOM) caused by Streptococcus pneumoniae remains one of the most common infectious diseases worldwide despite widespread vaccination. A major limitation of the currently licensed pneumococcal vaccines is the lack of efficacy against mucosal disease manifestations such as AOM, acute bacterial sinusitis and pneumonia. We sought to generate a novel class of live vaccines that (1) retain all major antigenic virulence proteins yet are fully attenuated and (2) protect against otitis media. A live vaccine candidate based on deletion of the signal recognition pathway component ftsY induced potent, serotype-independent protection against otitis media, sinusitis, pneumonia and invasive pneumococcal disease. Protection was maintained in animals coinfected with influenza virus, but was lost if mice were depleted of CD4(+) T cells at the time of vaccination. The live vaccine induced a strong serum IgG2a and IgG2b response that correlated with CD4(+) T-cell mediated class switching. Deletion of genes required for microbial adaptation to the host environment is a novel live attenuated vaccine strategy yielding the first experimental vaccine effective against pneumococcal otitis media.

Concepts: Immune system, Microbiology, Pneumonia, Streptococcus pneumoniae, Vaccine, Pneumococcal vaccine, Otitis media, Haemophilus influenzae

1

The seven-valent pneumococcal conjugate vaccine (PCV) was introduced in England in September 2006, changing to the 13-valent vaccine in April 2010. PCV impact on invasive pneumococcal disease (IPD) has been extensively reported, but less described is its impact on the burden of pneumonia, sepsis and otitis media in the hospital.

Concepts: Pneumonia, Streptococcus pneumoniae, Pneumococcal conjugate vaccine, Pneumococcal vaccine, Pneumococcal polysaccharide vaccine, Otitis media, Meningitis, Haemophilus influenzae

1

Nonencapsulated Streptococcus pneumoniae (NESp) is an emerging human pathogen that colonizes the nasopharynx and is associated with noninvasive diseases such as otitis media (OM), conjunctivitis, and nonbacteremic pneumonia. Since capsule expression was previously thought to be necessary for establishment of invasive pneumococcal disease (IPD), serotype-specific polysaccharide capsules are targeted by currently licensed pneumococcal vaccines. Yet, NESp expressing oligopeptide binding proteins AliC and AliD have been isolated during IPD. Thus, we hypothesize AliC and AliD are major NESp virulence determinants that facilitate persistence and development of IPD. Our study reveals that NESp expressing AliC and AliD have intensified virulence compared to isogenic mutants. Specifically, we demonstrate AliC and AliD enhance murine nasopharyngeal colonization and pulmonary infection and are required for OM in a chinchilla model. Furthermore, AliC and AliD increase pneumococcal survival in chinchilla whole blood and aid in resistance to killing by human leukocytes. Comparative proteome analysis revealed significant alterations in protein levels when AliC and AliD were absent. Virulence-associated proteins, including a pneumococcal surface protein C variant (CbpAC), were significantly downregulated, while starvation response indicators were upregulated in the double mutant relative to wild-type levels. We also reveal that differentially expressed CbpAC was essential for NESp adherence to epithelial cells, virulence during OM, reduction of C3b deposition on the NESp surface, and binding to nonspecific IgA. Altogether, the rise in NESp prevalence urges the need to understand how NESp establishes disease and persists in a host. This study highlights the roles of AliC, AliD, and CbpAC in the pathogenesis of NESp.IMPORTANCE Despite the effective, widespread use of licensed pneumococcal vaccines over many decades, pneumococcal infections remain a worldwide burden resulting in high morbidity and mortality. NESp subpopulations are rapidly rising in the wake of capsule-targeted vaccine strategies, yet there is very little knowledge on NESp pathogenic potential and virulence mechanisms. Although NESp lacks a protective capsule, NESp lineages expressing AliC and AliD have been associated with systemic infections. Furthermore, higher antibiotic resistance rates and transformation efficiencies associated with emerging NESp threaten treatment strategies needed to control pneumococcal infections and transmission. Elucidating how NESp survives within a host and establishes disease is necessary for development of broadened pneumococcal prevention methods. Our study identifies virulence determinants and host survival mechanisms employed by NESp with a high pathogenic potential. Moreover, our study also identifies virulence determinants shared by NESp and encapsulated strains that may serve as broad prevention and therapeutic targets.

Concepts: Microbiology, Pneumonia, Streptococcus pneumoniae, Streptococcus, Pneumococcal conjugate vaccine, Pneumococcal vaccine, Pneumococcal polysaccharide vaccine, Otitis media

1

A prospective laboratory-based multicenter study that collected all adult invasive pneumococcal disease (IPD) episodes from 6 Spanish hospitals before (2008-2009) and after (2012-2013). The 13-valent pneumococcal conjugate vaccine (PCV13) licensure was conducted in order to analyze the impact of PCV13 introduction for children on adult IPD. A total of 1558 IPD episodes were detected. The incidence of IPD decreased significantly in the second period by -33.9% (95% CI, -40.3% to -26.8%). IPD due to PCV7 serotypes (-52.7%; 95% CI, -64.2% to -37.5%) and to PCV13 additional serotypes (-55.0% 95% CI, -62.0% to -46.7%) significantly decreased whereas IPD due to non-PCV13 serotypes remained stable (1.0% 95% CI, -12.9% to 17.2%). IPD due to all PCV13 additional serotypes significantly declined with the exception of serotype 3 (-11.3%; 95%CI -35.0% to 21.1%). IPD due to two non-PCV13 serotypes varied: serotype 6C that rose (301.6%; 95%CI, 92.7% to 733.3%, p<0.001), related to the expansion of ST3866C, and serotype 8 that decreased (-34.9%, 95%CI, -57.1 to -1.2, p = 0.049), related to a decline of the ST638. The recombinant clone ST652111A (variant of ST1569V) increased in frequency. The decrease of serotype 19A IPD was linked to a fall in those antibiotic susceptible clones. In the last period, rates of penicillin- and cefotaxime-resistance remained under 10% and 4%, respectively. Adult IPD decreased after the PCV13 introduction in Spain due to herd protection. The spread of multidrug resistant clones (ST3866C, ST652111A) related to non-PCV13 serotypes needs further surveillance.

Concepts: Microbiology, Pneumonia, Streptococcus pneumoniae, Pneumococcal infection, Pneumococcal conjugate vaccine, Pneumococcal vaccine, Pneumococcal polysaccharide vaccine, Antibiotic