Discover the most talked about and latest scientific content & concepts.

Concept: Place


While rehabilitation professionals are historically trained to place emphasis on the restoration of mobility following lower limb amputation, changes in healthcare dynamics are placing an increased emphasis on the limb loss patient’s quality of life and general satisfaction. Thus, the relationship between these constructs and mobility in the patient with lower limb loss warrants further investigation.

Concepts: Health care provider, Patient, Life, Illness, Patience, Amputation, Prosthesis, Place


When placing one hand on each side of a mirror and making synchronous bimanual movements, the mirror-reflected hand feels like one’s own hand that is hidden behind the mirror. We developed a novel mirror box illusion to investigate whether motoric, but not spatial, visuomotor congruence is sufficient for inducing multisensory integration, and importantly, if biomechanical constraints encoded in the body schema influence multisensory integration. Participants placed their hands in a mirror box in opposite postures (palm up, palm down), creating a conflict between visual and proprioceptive feedback for the hand behind the mirror. After synchronous bimanual hand movements in which the viewed and felt movements were motorically congruent but spatially in the opposite direction, participants felt that the hand behind the mirror rotated or completely flipped towards matching the hand reflection (illusory displacement), indicating facilitation of multisensory integration by motoric visuomotor congruence alone. Some wrist rotations are more difficult due to biomechanical constraints. We predicted that these biomechanical constraints would influence illusion effectiveness, even though the illusion does not involve actual limb movement. As predicted, illusory displacement increased as biomechanical constraints and angular disparity decreased, providing evidence that biomechanical constraints are processed in multisensory integration.

Concepts: Rotation, Proprioception, Hand, Place, Phantom limb, Vilayanur S. Ramachandran


The protozoan flagellate Histomonas meleagridis is the etiological agent of histomonosis, first described in 1893. It is a fastidious disease in turkeys, with pathological lesions in the caeca and liver, sometimes with high mortality. In chickens the disease is less fatal and lesions are often confined to the caeca. The disease was well controlled by applying nitroimidazoles and nitrofurans for therapy or prophylaxis. Since their introduction into the market in the middle of the previous century, research nearly ceased as outbreaks of histomonosis occurred only very rarely. With the ban of these drugs in the last two decades in North America, the European Union and elsewhere, in combination with the changes in animal husbandry, the disease re-emerged. Consequently, research programs were set up in various places focusing on different features of the parasite and the disease. For the first time studies were performed to elucidate the molecular repertoire of the parasite. In addition, research has been started to investigate the parasite’s interaction with its host. New diagnostic methods and tools were developed and tested with samples obtained from field outbreaks or experimental infections. Some of these studies aimed to clarify the introduction of the protozoan parasite into a flock and the transmission between birds. Finally, a strong focus was placed on research concentrated on the development of new treatment and prophylactic strategies, urgently needed to combat the disease. This review aims to summarize recent research activities and place them into context with older literature.

Concepts: European Union, United States, Bird, North America, Place


Scanning fiber tips provides the most convenient way for forward-viewing fiber-optic microendoscopy. In this paper, a distal fiber scanning method based on a large-displacement MEMS actuator is presented. A single-mode fiber is glued on the micro-platform of an electrothermal MEMS stage to realize large range non-resonantscanning. The micro-platform has a large piston scan range of up to 800 µm at only 6V. The tip deflection of the fiber can be further amplified by placing the MEMS stage at a proper location along the fiber. A quasi-static model of the fiber-MEMS assembly has been developed and validated experimentally. The frequency response has also been studied and measured. A fiber tip deflection of up to 1650 µm for the 45 mm-long movable fiber portion has been achieved when the MEMS electrothermal stage was placed 25 mm away from the free end. The electrothermally-actuated MEMS stage shows a great potential for forward viewing fiber scanning and optical applications.

Concepts: Optical fiber, Scan, Place, Scanner, Multi-mode optical fiber, The Tip, Transverse mode, Single-mode optical fiber


Alcohol overuse and poverty, each associated with premature death, often exist within disadvantaged neighbourhoods. Cheque cashing places (CCPs) may be opportunistically placed in disadvantaged neighbourhoods, where customers abound. We explored whether neighbourhood density of CCPs and alcohol outlets are each related to premature mortality among adults.

Concepts: Disease, Death, Demography, Place, Neighbourhood


This study conducted a driving simulator experiment to comparatively evaluate three in-vehicle side-view displays layouts for camera monitor systems (CMS) and the traditional side-view mirror arrangement. The three layouts placed two electronic side-view displays near the traditional mirrors positions, on the dashboard at each side of the steering wheel and on the centre fascia with the two displays joined side-by-side, respectively. Twenty-two participants performed a time- and safety-critical driving task that required rapidly gaining situation awareness through the side-view displays/mirrors and making a lane change to avoid collision. The dependent variables were eye-off-the-road time, response time, and, ratings of perceived workload, preference and perceived safety. Overall, the layout placing the side-view displays on the dashboard at each side of the steering wheel was found to be the best. The results indicated that reducing eye gaze travel distance and maintaining compatibility were both important for the design of CMS displays layout.

Concepts: Change, Mirror, Automobile, Place, Mirrors, Layout


The mammalian hippocampus is important for normal memory function, particularly memory for places and events. Place cells, neurons within the hippocampus that have spatial receptive fields, represent information about an animal’s position. During periods of rest, but also during active task engagement, place cells spontaneously recapitulate past trajectories. Such ‘replay’ has been proposed as a mechanism necessary for a range of neurobiological functions, including systems memory consolidation, recall and spatial working memory, navigational planning, and reinforcement learning. Focusing mainly, but not exclusively, on work conducted in rodents, we describe the methodologies used to analyse replay and review evidence for its putative roles. We identify outstanding questions as well as apparent inconsistencies in existing data, making suggestions as to how these might be resolved. In particular, we find support for the involvement of replay in disparate processes, including the maintenance of hippocampal memories and decision making. We propose that the function of replay changes dynamically according to task demands placed on an organism and its current level of arousal.

Concepts: Amygdala, Memory, Hippocampus, Metaphysics, Long-term potentiation, Place cell, Episodic memory, Place


Despite their importance in public discourse, numbers in the range of 1 million to 1 trillion are notoriously difficult to understand. We examine magnitude estimation by adult Americans when placing large numbers on a number line and when qualitatively evaluating descriptions of imaginary geopolitical scenarios. Prior theoretical conceptions predict a log-to-linear shift: People will either place numbers linearly or will place numbers according to a compressive logarithmic or power-shaped function (Barth & Paladino, ; Siegler & Opfer, ). While about half of people did estimate numbers linearly over this range, nearly all the remaining participants placed 1 million approximately halfway between 1 thousand and 1 billion, but placed numbers linearly across each half, as though they believed that the number words “thousand, million, billion, trillion” constitute a uniformly spaced count list. Participants in this group also tended to be optimistic in evaluations of largely ineffective political strategies, relative to linear number-line placers. The results indicate that the surface structure of number words can heavily influence processes for dealing with numbers in this range, and it can amplify the possibility that analogous surface regularities are partially responsible for parallel phenomena in children. In addition, these results have direct implications for lawmakers and scientists hoping to communicate effectively with the public.

Concepts: Mathematics, Number, Real number, Approximation, Estimation, Place, Names of large numbers, Googol


Place can be generally defined as a location that has been assigned meaning through human experience, and as such it is of multidisciplinary scientific interest. Up to this point place has been studied primarily within the context of social sciences as a theoretical construct. The availability of large amounts of user-generated content, e.g. in the form of social media feeds or Wikipedia contributions, allows us for the first time to computationally analyze and quantify the shared meaning of place. By aggregating references to human activities within urban spaces we can observe the emergence of unique themes that characterize different locations, thus identifying places through their discernible sociocultural signatures. In this paper we present results from a novel quantitative approach to derive such sociocultural signatures from Twitter contributions and also from corresponding Wikipedia entries. By contrasting the two we show how particular thematic characteristics of places (referred to herein as platial themes) are emerging from such crowd-contributed content, allowing us to observe the meaning that the general public, either individually or collectively, is assigning to specific locations. Our approach leverages probabilistic topic modelling, semantic association, and spatial clustering to find locations are conveying a collective sense of place. Deriving and quantifying such meaning allows us to observe how people transform a location to a place and shape its characteristics.

Concepts: Scientific method, Sociology, Science, Semantics, Web 2.0, User-generated content, Place, Social media


A grand challenge of tissue engineering is the fabrication of large constructs with a high density of living cells. By adapting the principles of pick-and-place machines used in the high-speed assembly of electronics, we have developed an innovative instrument, the Bio-Pick, Place, and Perfuse (Bio-P3), which picks up large complex multi-cellular building parts, transports them to a build area, and precisely places the parts at desired locations while perfusing the parts. These assembled parts subsequently fuse to form a larger contiguous tissue construct. Multi-cellular microtissues were formed by seeding cells into nonadhesive micro-molds, wherein cells self-assembled scaffold-free parts in the shape of spheroids, toroids, and honeycombs. After removal from the molds, the parts were gripped, transported (using an x, y, z controller), and released using the Bio-P3 with little to no effect on cell viability or part structure. As many as sixteen toroids were stacked over a 170 micron diameter post where they fused over the course of 48 hours to form a single tissue. Larger honeycomb parts were also gripped and stacked onto a build head which, like the gripper head, provided fluid suction to hold as well as perfuse the parts during assembly. Scaffold-free building parts help to address several of the engineering and biological challenges to large tissue biofabrication, and the Bio-P3 described in this paper is a novel instrument for the controlled gripping, placing, stacking, and perfusing of living building parts for solid organ fabrication.

Concepts: DNA, Cell, Organelle, Secretion, Cell biology, Organ, Multicellular organism, Place