SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Pinniped

278

Microplastics are highly bioavailable to marine organisms, either through direct ingestion, or indirectly by trophic transfer from contaminated prey. The latter has been observed for low-trophic level organisms in laboratory conditions, yet empirical evidence in high trophic-level taxa is lacking. In natura studies face difficulties when dealing with contamination and differentiating between directly and indirectly ingested microplastics. The ethical constraints of subjecting large organisms, such as marine mammals, to laboratory investigations hinder the resolution of these limitations. Here, these issues were resolved by analysing sub-samples of scat from captive grey seals (Halichoerus grypus) and whole digestive tracts of the wild-caught Atlantic mackerel (Scomber scombrus) they are fed upon. An enzymatic digestion protocol was employed to remove excess organic material and facilitate visual detection of synthetic particles without damaging them. Polymer type was confirmed using Fourier-Transform Infrared (FTIR) spectroscopy. Extensive contamination control measures were implemented throughout. Approximately half of scat subsamples (48%; n = 15) and a third of fish (32%; n = 10) contained 1-4 microplastics. Particles were mainly black, clear, red and blue in colour. Mean lengths were 1.5 mm and 2 mm in scats and fish respectively. Ethylene propylene was the most frequently detected polymer type in both. Our findings suggest trophic transfer represents an indirect, yet potentially major, pathway of microplastic ingestion for any species whose feeding ecology involves the consumption of whole prey, including humans.

Concepts: Digestive system, Digestion, Apex predator, Pinniped, Gray Seal, Scombridae, Atlantic mackerel, Mackerel

170

Loss of Arctic sea ice owing to climate change is the primary threat to polar bears throughout their range. We evaluated the potential response of polar bears to sea-ice declines by (i) calculating generation length (GL) for the species, which determines the timeframe for conservation assessments; (ii) developing a standardized sea-ice metric representing important habitat; and (iii) using statistical models and computer simulation to project changes in the global population under three approaches relating polar bear abundance to sea ice. Mean GL was 11.5 years. Ice-covered days declined in all subpopulation areas during 1979-2014 (median -1.26 days year(-1)). The estimated probabilities that reductions in the mean global population size of polar bears will be greater than 30%, 50% and 80% over three generations (35-41 years) were 0.71 (range 0.20-0.95), 0.07 (range 0-0.35) and less than 0.01 (range 0-0.02), respectively. According to IUCN Red List reduction thresholds, which provide a common measure of extinction risk across taxa, these results are consistent with listing the species as vulnerable. Our findings support the potential for large declines in polar bear numbers owing to sea-ice loss, and highlight near-term uncertainty in statistical projections as well as the sensitivity of projections to different plausible assumptions.

Concepts: Arctic Ocean, Arctic, Pinniped, Bear, Polar bear, Arctic shrinkage, IUCN Red List, Sea ice

170

A global trend of a warming climate may seriously affect species dependent on sea ice. We investigated the impact of climate on the Baltic ringed seals (Phoca hispida botnica), using historical and future climatological time series. Availability of suitable breeding ice is known to affect pup survival. We used detailed information on how winter temperatures affect the extent of breeding ice and a climatological model (RCA3) to project the expected effects on the Baltic ringed seal population. The population comprises of three sub-populations, and our simulations suggest that all of them will experience severely hampered growth rates during the coming 90 years. The projected 30 730 seals at the end of the twenty-first century constitutes only 16 % of the historical population size, and thus reduced ice cover alone will severely limit their growth rate. This adds burden to a species already haunted by other anthropogenic impacts.

Concepts: Population ecology, Climate, Pinniped, Global warming, Polar bear, Ringed Seal, Saimaa Ringed Seal, Pusa

167

BACKGROUND: Brucella is a group of bacteria that causes brucellosis, which can affect population health and reproductive success in many marine mammals. We investigated the serological prevalence of antibodies against Brucella bacteria in a declining harbor seal population in Glacier Bay National Park, Alaska. RESULTS: Prevalence ranged from 16 to 74 percent for those tests detecting antibodies, indicating that harbor seals in Glacier Bay have been exposed to Brucella bacteria. However, the actual level of serological prevalence could not be determined because results were strongly assay-dependent. CONCLUSIONS: This study reinforces the need to carefully consider assay choice when comparing different studies on the prevalence of anti–Brucella antibodies in pinnipeds and further highlights the need for species- or taxon-specific assay validation for both pathogen and host species.

Concepts: Immune system, Antibody, Bacteria, Pinniped, True seals, Harbor Seal, Marine mammals

158

All seals and cetaceans have lost at least one of two ancestral cone classes and should therefore be colour-blind. Nevertheless, earlier studies showed that these marine mammals can discriminate colours and a colour vision mechanism has been proposed which contrasts signals from cones and rods. However, these earlier studies underestimated the brightness discrimination abilities of these animals, so that they could have discriminated colours using brightness only. Using a psychophysical discrimination experiment, we showed that a harbour seal can solve a colour discrimination task by means of brightness discrimination alone. Performing a series of experiments in which two harbour seals had to discriminate the brightness of colours, we also found strong evidence for purely scotopic (rod-based) vision at light levels that lead to mesopic (rod-cone-based) vision in other mammals. This finding speaks against rod-cone-based colour vision in harbour seals. To test for colour-blindness, we used a cognitive approach involving a harbour seal trained to use a concept of same and different. We tested this seal with pairs of isoluminant stimuli that were either same or different in colour. If the seal had perceived colour, it would have responded to colour differences between stimuli. However, the seal responded with “same”, providing strong evidence for colour-blindness.

Concepts: Retina, Eye, Photoreceptor cell, Color, Color blindness, Color vision, Pinniped, Cone cell

101

Regional declines in polar bear (Ursus maritimus) populations have been attributed to changing sea ice conditions, but with limited information on the causative mechanisms. By simultaneously measuring field metabolic rates, daily activity patterns, body condition, and foraging success of polar bears moving on the spring sea ice, we found that high metabolic rates (1.6 times greater than previously assumed) coupled with low intake of fat-rich marine mammal prey resulted in an energy deficit for more than half of the bears examined. Activity and movement on the sea ice strongly influenced metabolic demands. Consequently, increases in mobility resulting from ongoing and forecasted declines in and fragmentation of sea ice are likely to increase energy demands and may be an important factor explaining observed declines in body condition and survival.

Concepts: Arctic, Pinniped, Bear, Carnivore, Polar bear, Arctic shrinkage, Sea ice, Marine mammal

93

Vocal learning, the substrate of human language acquisition, has rarely been described in other mammals. Often, group-specific vocal dialects in wild populations provide the main evidence for vocal learning. While social learning is often the most plausible explanation for these intergroup differences, it is usually impossible to exclude other driving factors, such as genetic or ecological backgrounds. Here, we show the formation of dialects through social vocal learning in fruit bats under controlled conditions. We raised 3 groups of pups in conditions mimicking their natural roosts. Namely, pups could hear their mothers' vocalizations but were also exposed to a manipulation playback. The vocalizations in the 3 playbacks mainly differed in their fundamental frequency. From the age of approximately 6 months and onwards, the pups demonstrated distinct dialects, where each group was biased towards its playback. We demonstrate the emergence of dialects through social learning in a mammalian model in a tightly controlled environment. Unlike in the extensively studied case of songbirds where specific tutors are imitated, we demonstrate that bats do not only learn their vocalizations directly from their mothers, but that they are actually influenced by the sounds of the entire crowd. This process, which we term “crowd vocal learning,” might be relevant to many other social animals such as cetaceans and pinnipeds.

Concepts: Mammal, Acoustics, Learning, Intelligence, Sound, Pinniped, Language acquisition, Vocal learning

55

Harbour porpoises (Phocoena phocoena) stranding in large numbers around the southern North Sea with fatal, sharp-edged mutilations have spurred controversy among scientists, the fishing industry and conservationists, whose views about the likely cause differ. The recent detection of grey seal (Halichoerus grypus) DNA in bite marks on three mutilated harbour porpoises, as well as direct observations of grey seal attacks on porpoises, have identified this seal species as a probable cause. Bite mark characteristics were assessed in a retrospective analysis of photographs of dead harbour porpoises that stranded between 2003 and 2013 (n = 1081) on the Dutch coastline. There were 271 animals that were sufficiently fresh to allow macroscopic assessment of grey seal-associated wounds with certainty. In 25% of these, bite and claw marks were identified that were consistent with the marks found on animals that had tested positive for grey seal DNA. Affected animals were mostly healthy juveniles that had a thick blubber layer and had recently fed. We conclude that the majority of the mutilated harbour porpoises were victims of grey seal attacks and that predation by this species is one of the main causes of death in harbour porpoises in The Netherlands. We provide a decision tree that will help in the identification of future cases of grey seal predation on porpoises.

Concepts: Fish, Netherlands, Pinniped, Gray Seal, Massachusetts, Cetacea, Harbour porpoise, Porpoises

47

Young animals must learn to forage effectively to survive the transition from parental provisioning to independent feeding. Rapid development of successful foraging strategies is particularly important for capital breeders that do not receive parental guidance after weaning. The intrinsic and extrinsic drivers of variation in ontogeny of foraging are poorly understood for many species. Grey seals (Halichoerus grypus) are typical capital breeders; pups are abandoned on the natal site after a brief suckling phase, and must develop foraging skills without external input. We collected location and dive data from recently-weaned grey seal pups from two regions of the United Kingdom (the North Sea and the Celtic and Irish Seas) using animal-borne telemetry devices during their first months of independence at sea. Dive duration, depth, bottom time, and benthic diving increased over the first 40 days. The shape and magnitude of changes differed between regions. Females consistently had longer bottom times, and in the Celtic and Irish Seas they used shallower water than males. Regional sex differences suggest that extrinsic factors, such as water depth, contribute to behavioural sexual segregation. We recommend that conservation strategies consider movements of young naïve animals in addition to those of adults to account for developmental behavioural changes.

Concepts: Gender, United Kingdom, Sex, Motivation, Pinniped, Gray Seal, Massachusetts, Farne Islands

39

The evolutionary origin of rhythm perception, a cognitive ability essential to musicality, remains unresolved [1-5]. The ability to perceive and memorize rhythmic sounds is widely shared among humans [6] but seems rare among other mammals [7, 8]. Although the perception of temporal metrical patterns has been found in a few species, this ability has only been demonstrated through behavioral training [9] (but see [10] for an example of spontaneous tempo coordination in a bonobo), and there is no experimental evidence to indicate its biological function. Furthermore, there is no example of a non-human mammal able to remember and recognize auditory rhythmic patterns among a wide range of tempi. In the northern elephant seal Mirounga angustirostris, the calls of mature males comprise a rhythmic series of pulses, with the call of each individual characterized by its tempo and timbre; these individual vocal signatures are stable over years and across contexts [11]. Here, we report that northern elephant seal males routinely memorize and recognize the unique tempo and timbre of their rivals' voices and use this rhythmic information to individually identify competitors, which facilitates navigation within the social network of the rookery. By performing playbacks with natural and modified vocalizations, we show that males are sensitive to call rhythm disruption independently of modification of spectral features and that they use both temporal and spectral cues to identify familiar rivals. While spectral features of calls typically encode individual identity in mammalian vocalizations [12], this is the first example of this phenomenon involving sound rhythm.

Concepts: Psychology, Human, Mammal, Rhythm, Pinniped, Northern Elephant Seal, Elephant seal, Southern Elephant Seal