Discover the most talked about and latest scientific content & concepts.

Concept: Phytoplankton


This study compares the structure of eelgrass (Zostera marina L.) meadows and associated food webs in two eelgrass habitats in Denmark, differing in exposure, connection to the open sea, nutrient enrichment and water transparency. Meadow structure strongly reflected the environmental conditions in each habitat. The eutrophicated, protected site had higher biomass of filamentous algae, lower eelgrass biomass and shoot density, longer and narrower leaves, and higher above to below ground biomass ratio compared to the less nutrient-enriched and more exposed site. The faunal community composition and food web structure also differed markedly between sites with the eutrophicated, enclosed site having higher biomass of consumers and less complex food web. These relationships resulted in a column shaped biomass distribution of the consumers at the eutrophicated site whereas the less nutrient-rich site showed a pyramidal biomass distribution of consumers coupled with a more diverse consumer community. The differences in meadow and food web structure of the two seagrass habitats, suggest how physical setting may shape ecosystem response and resilience to anthropogenic pressure. We encourage larger, replicated studies to further disentangle the effects of different environmental variables on seagrass food web structure.

Concepts: Photosynthesis, Coral reef, Ecosystem, Trophic level, Phytoplankton, Food chain, Consumer protection, Zostera


Antarctic krill is a cold water species, an increasingly important fishery resource and a major prey item for many fish, birds and mammals in the Southern Ocean. The fishery and the summer foraging sites of many of these predators are concentrated between 0° and 90°W. Parts of this quadrant have experienced recent localised sea surface warming of up to 0.2°C per decade, and projections suggest that further widespread warming of 0.27° to 1.08°C will occur by the late 21(st) century. We assessed the potential influence of this projected warming on Antarctic krill habitat with a statistical model that links growth to temperature and chlorophyll concentration. The results divide the quadrant into two zones: a band around the Antarctic Circumpolar Current in which habitat quality is particularly vulnerable to warming, and a southern area which is relatively insensitive. Our analysis suggests that the direct effects of warming could reduce the area of growth habitat by up to 20%. The reduction in growth habitat within the range of predators, such as Antarctic fur seals, that forage from breeding sites on South Georgia could be up to 55%, and the habitat’s ability to support Antarctic krill biomass production within this range could be reduced by up to 68%. Sensitivity analysis suggests that the effects of a 50% change in summer chlorophyll concentration could be more significant than the direct effects of warming. A reduction in primary production could lead to further habitat degradation but, even if chlorophyll increased by 50%, projected warming would still cause some degradation of the habitat accessible to predators. While there is considerable uncertainty in these projections, they suggest that future climate change could have a significant negative effect on Antarctic krill growth habitat and, consequently, on Southern Ocean biodiversity and ecosystem services.

Concepts: Photosynthesis, Ecology, Pacific Ocean, Phytoplankton, Antarctica, Southern Ocean, Krill, Antarctic Circumpolar Current


As anthropogenic CO2 emissions acidify the oceans, calcifiers generally are expected to be negatively affected. However, using data from the Continuous Plankton Recorder, we show that coccolithophore occurrence in the North Atlantic increased from ~2 to over 20% from 1965 through 2010. We used Random Forest models to examine >20 possible environmental drivers of this change, finding that CO2 and the Atlantic Multidecadal Oscillation were the best predictors, leading us to hypothesize that higher CO2 levels might be encouraging growth. A compilation of 41 independent laboratory studies supports our hypothesis. Our study shows a long-term basin-scale increase in coccolithophores and suggests that increasing CO2 and temperature have accelerated the growth of a phytoplankton group that is important for carbon cycling.

Concepts: Carbon dioxide, Atlantic Ocean, Ocean, Coccolithophore, Phytoplankton, Global warming, Plankton, Ocean acidification


Phytoplankton blooms over Arctic Ocean continental shelves are thought to be restricted to waters free of sea ice. Here, we document a massive phytoplankton bloom beneath fully consolidated pack ice far from the ice edge in the Chukchi Sea, where light transmission has increased in recent decades because of thinning ice cover and proliferation of melt ponds. The bloom was characterized by high diatom biomass and rates of growth and primary production. Evidence suggests that under-ice phytoplankton blooms may be more widespread over nutrient-rich Arctic continental shelves and that satellite-based estimates of annual primary production in these waters may be underestimated by up to 10-fold.

Concepts: Canada, Phytoplankton, Arctic Ocean, Plankton, Arctic Circle, Sea ice, Wrangel Island, Bering Strait


Climate variability alters nitrogen cycling, primary productivity, and dissolved oxygen concentration in marine ecosystems. We examined the role of this variability (as measured by six variables) on food chain length (FCL) in the California Current (CC) by reconstructing a time series of amino acid-specific δ(15)N values derived from common dolphins, an apex pelagic predator, and using two FCL proxies. Strong declines in FCL were observed after the 1997-1999 El Niño Southern Oscillation (ENSO) event. Bayesian models revealed longer FCLs under intermediate conditions for surface temperature, chlorophyll concentration, multivariate ENSO index, and total plankton volume but not for hypoxic depth and nitrate concentration. Our results challenge the prevalent paradigm that suggested long-term stability in the food web structure in the CC and, instead, reveal that pelagic food webs respond strongly to disturbances associated with ENSO events, local oceanography, and ongoing changes in climate.

Concepts: Photosynthesis, Ecosystem, Climate change, Trophic level, Phytoplankton, Food chain, Apex predator, Chemosynthesis


The 2010 Deepwater Horizon oil spill resulted in 1.6-2.6 × 10(10) grams of petrocarbon accumulation on the seafloor. Data from a deep sediment trap, deployed 7.4 km SW of the well between August 2010 and October 2011, disclose that the sinking of spill-associated substances, mediated by marine particles, especially phytoplankton, continued at least 5 mo following the capping of the well. In August/September 2010, an exceptionally large diatom bloom sedimentation event coincided with elevated sinking rates of oil-derived hydrocarbons, black carbon, and two key components of drilling mud, barium and olefins. Barium remained in the water column for months and even entered pelagic food webs. Both saturated and polycyclic aromatic hydrocarbon source indicators corroborate a predominant contribution of crude oil to the sinking hydrocarbons. Cosedimentation with diatoms accumulated contaminants that were dispersed in the water column and transported them downward, where they were concentrated into the upper centimeters of the seafloor, potentially leading to sustained impact on benthic ecosystems.

Concepts: Petroleum, Carbon, Polycyclic aromatic hydrocarbon, Benzene, Hydrocarbon, Aromatic hydrocarbon, Phytoplankton, Diatom


The objective of this work was to understand and optimize the flocculation of a marine alga Nannochloropsis oculata with two cationic salts, aluminum sulfate (AS), and ferric chloride (FC). Based on single-factor and response-surface-methodology experiments, second-order polynomial models were developed to examine the effect of initial algal biomass concentration (IABC), pH, and flocculant dose (FD) on final solid concentration of algae (SCA). The experimental and modeling results showed that SCA favored low pH, which however was undesirable to biomass recovery rate. There existed a positive stoichiometric relationship between FD and IABC; higher IABC required higher FD, and vice versa, for higher SCA. Optimum flocculation conditions were predicted at IABC of 1.7 g/l, pH 8.3, and FD of 383.5 μM for AS, and IABC of 2.2 g/l, pH 7.9, and FD of 438.1 μM for FC, under which the predicted maximum SCA were 32.98 and 30.10 g/l using AS and FC, respectively. The predictions were close to validation experimental results, indicating that the models can be used to guide and optimize the flocculation of N. oculata using AS and FC as the flocculants.

Concepts: Algae, Photosynthesis, Optimization, Phytoplankton, Flocculation, Algae fuel, Algaculture, Aluminium sulfate


Phytoplankton are key components of aquatic ecosystems, fixing CO2 from the atmosphere through photosynthesis and supporting secondary production, yet relatively little is known about how future global warming might alter their biodiversity and associated ecosystem functioning. Here, we explore how the structure, function, and biodiversity of a planktonic metacommunity was altered after five years of experimental warming. Our outdoor mesocosm experiment was open to natural dispersal from the regional species pool, allowing us to explore the effects of experimental warming in the context of metacommunity dynamics. Warming of 4°C led to a 67% increase in the species richness of the phytoplankton, more evenly-distributed abundance, and higher rates of gross primary productivity. Warming elevated productivity indirectly, by increasing the biodiversity and biomass of the local phytoplankton communities. Warming also systematically shifted the taxonomic and functional trait composition of the phytoplankton, favoring large, colonial, inedible phytoplankton taxa, suggesting stronger top-down control, mediated by zooplankton grazing played an important role. Overall, our findings suggest that temperature can modulate species coexistence, and through such mechanisms, global warming could, in some cases, increase the species richness and productivity of phytoplankton communities.

Concepts: Photosynthesis, Ecology, Ecosystem, Primary production, Phytoplankton, Aquatic ecology, Global warming, Plankton


Climate warming is accelerating the retreat of glaciers and recently, many ‘new’ glacial turbid lakes have been created. In the course of time, the loss of the hydrological connectivity to a glacier causes, however, changes in their water turbidity and turns these ecosystems into clear ones.To understand potential differences in the food-web structure between glacier-fed turbid and clear alpine lakes, we sampled ciliates, phyto-, bacterio- and zooplankton in one clear and one glacial turbid alpine lake, and measured key physicochemical parameters. In particular, we focused on the ciliate community and the potential drivers for their abundance distribution.In both lakes, the zooplankton community was similar and dominated by the copepod Cyclops abyssorum tatricus and rotifers including Polyarthra dolichoptera, Keratella hiemalis, Keratella cochlearis and Notholca squamula. The phytoplankton community structure differed and it was dominated by the planktonic diatom Fragilaria tenera and the cryptophyte alga Plagioselmis nannoplanctica in the glacial turbid lake, while chrysophytes and dinoflagellates were predominant in the clear one.Ciliate abundance and richness were higher in the glacial turbid lake (∼4000-27 800 Ind L(-1), up to 29 species) than in the clear lake (∼570-7150 Ind L(-1), up to eight species). The dominant species were Balanion planctonicum, Askenasia cf. chlorelligera, Urotricha cf. furcata and Mesodinium cf. acarus. The same species dominated in both lakes, except for Mesodinium cf. acarus and some particle-associated ciliates, which occurred exclusively in the glacial turbid lake. The relative underwater solar irradiance (i.e. percentage of PAR and UVR at depth) significantly explained their abundance distribution pattern, especially in the clear water lake. In the glacial turbid lake, the abundance of the dominating ciliate taxa was mainly explained by the presence of predatory zooplankton.Our results revealed an unexpected high abundance and richness of protists (algae, ciliates) in the glacial turbid lake. This type of lake likely offers more suitable environmental conditions and resource niches for protists than the clear and highly UV transparent lake.

Concepts: Algae, Lake, Phytoplankton, Protist, Dinoflagellate, Antarctica, Plankton, Turbidity


In Eastern Boundary Current systems, wind-driven upwelling drives nutrient-rich water to the ocean surface, making these regions among the most productive on Earth. Regulation of productivity by changing wind and/or nutrient conditions can dramatically impact ecosystem functioning, though the mechanisms are not well understood beyond broad-scale relationships. Here, we explore bottom-up controls during the California Current System (CCS) upwelling season by quantifying the dependence of phytoplankton biomass (as indicated by satellite chlorophyll estimates) on two key environmental parameters: subsurface nitrate concentration and surface wind stress. In general, moderate winds and high nitrate concentrations yield maximal biomass near shore, while offshore biomass is positively correlated with subsurface nitrate concentration. However, due to nonlinear interactions between the influences of wind and nitrate, bottom-up control of phytoplankton cannot be described by either one alone, nor by a combined metric such as nitrate flux. We quantify optimal environmental conditions for phytoplankton, defined as the wind/nitrate space that maximizes chlorophyll concentration, and present a framework for evaluating ecosystem change relative to environmental drivers. The utility of this framework is demonstrated by (i) elucidating anomalous CCS responses in 1998-1999, 2002, and 2005, and (ii) providing a basis for assessing potential biological impacts of projected climate change.

Concepts: Climate, Weather, Physical oceanography, Ocean, Phytoplankton, Ocean current, Upwelling, California Current