SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Partial pressure

143

Background Whether noninvasive ventilation should be administered in patients with acute hypoxemic respiratory failure is debated. Therapy with high-flow oxygen through a nasal cannula may offer an alternative in patients with hypoxemia. Methods We performed a multicenter, open-label trial in which we randomly assigned patients without hypercapnia who had acute hypoxemic respiratory failure and a ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen of 300 mm Hg or less to high-flow oxygen therapy, standard oxygen therapy delivered through a face mask, or noninvasive positive-pressure ventilation. The primary outcome was the proportion of patients intubated at day 28; secondary outcomes included all-cause mortality in the intensive care unit and at 90 days and the number of ventilator-free days at day 28. Results A total of 310 patients were included in the analyses. The intubation rate (primary outcome) was 38% (40 of 106 patients) in the high-flow-oxygen group, 47% (44 of 94) in the standard group, and 50% (55 of 110) in the noninvasive-ventilation group (P=0.18 for all comparisons). The number of ventilator-free days at day 28 was significantly higher in the high-flow-oxygen group (24±8 days, vs. 22±10 in the standard-oxygen group and 19±12 in the noninvasive-ventilation group; P=0.02 for all comparisons). The hazard ratio for death at 90 days was 2.01 (95% confidence interval [CI], 1.01 to 3.99) with standard oxygen versus high-flow oxygen (P=0.046) and 2.50 (95% CI, 1.31 to 4.78) with noninvasive ventilation versus high-flow oxygen (P=0.006). Conclusions In patients with nonhypercapnic acute hypoxemic respiratory failure, treatment with high-flow oxygen, standard oxygen, or noninvasive ventilation did not result in significantly different intubation rates. There was a significant difference in favor of high-flow oxygen in 90-day mortality. (Funded by the Programme Hospitalier de Recherche Clinique Interrégional 2010 of the French Ministry of Health; FLORALI ClinicalTrials.gov number, NCT01320384 .).

Concepts: Oxygen, Intensive care medicine, Hypoxia, Partial pressure, Oxygen therapy, Breathing gas, Nasal cannula, Hypoxemia

55

The teleost fishes represent over half of all extant vertebrates; they occupy nearly every body of water and in doing so, occupy a diverse array of environmental conditions. We propose that their success is related to a unique oxygen (O2) transport system involving their extremely pH-sensitive haemoglobin (Hb). A reduction in pH reduces both Hb-O2 affinity (Bohr effect) and carrying capacity (Root effect). This, combined with a large arterial-venous pH change (ΔpHa-v) relative to other vertebrates, may greatly enhance tissue oxygen delivery in teleosts (e.g., rainbow trout) during stress, beyond that in mammals (e.g., human). We generated oxygen equilibrium curves (OECs) at five different CO2 tensions for rainbow trout and determined that, when Hb-O2 saturation is 50% or greater, the change in oxygen partial pressure (ΔPO2) associated with ΔpHa-v can exceed that of the mammalian Bohr effect by at least 3-fold, but as much as 21-fold. Using known ΔpHa-v and assuming a constant arterial-venous PO2 difference (Pa-vO2), Root effect Hbs can enhance O2 release to the tissues by 73.5% in trout; whereas, the Bohr effect alone is responsible for enhancing O2 release by only 1.3% in humans. Disequilibrium states are likely operational in teleosts in vivo, and therefore the ΔpHa-v, and thus enhancement of O2 delivery, could be even larger. Modeling with known Pa-vO2 in fish during exercise and hypoxia indicates that O2 release from the Hb and therefore potentially tissue O2 delivery may double during exercise and triple during some levels of hypoxia. These characteristics may be central to performance of athletic fish species such as salmonids, but may indicate that general tissue oxygen delivery may have been the incipient function of Root effect Hbs in fish, a trait strongly associated with the adaptive radiation of teleosts.

Concepts: Hemoglobin, Oxygen, Carbon dioxide, Salmon, Salmonidae, Actinopterygii, Partial pressure, Niels Bohr

28

The insecticide methomyl, an oxime carbamate, was first introduced in 1968 for broad spectrum control of several insect classes, including Lepidoptera, Hemiptera, Homoptera, Diptera, and Coleoptera. Like other carbamates, it inhibits AChE activity, resulting in nerve and/or tissue failure and possibly death. Considered highly toxic to insects (larval and adult stages), methomyl is thought to be metabolically degraded via mixed-function oxidase(s). Methomyl has both a low vapor pressure and Henry’s law constant; hence, volatilization is not a major dissipation route from either water or moist or dry soils. Photolysis represents a minor dissipation pathway; however, under catalytic conditions, degradation via photolysis does occur. Methomyl possesses a moderate-to-high water solubility; thus hydrolysis, under alkaline conditions, represents a major degradation pathway. Methomyl has a low-to-moderate sorption capacity to soil. Although results may vary with soil type and organic matter content, methomyl is unlikely to persist in complex soils. Methomyl is more rapidly degraded by microbes, and bacterial species have been identified that are capable of using methomyl as a carbon and/or nitrogen source. The main degradation products of methomyl from both abiotic and biotic processes are methomyl oxime, acetonitrile, and CO₂. Methomyl is moderately to highly toxic to fishes and very highly toxic to aquatic invertebrates. Methomyl is highly toxic orally to birds and mammals. Methomyl is classed as being highly toxic to humans via oral exposures, moderately toxic via inhalation, and slightly toxic via dermal exposure. At relatively high doses, it can be fatal to humans. Although methomyl has been widely used to treat field crops and has high water solubility, it has only infrequently been detected as a contaminant of water bodies in the USA. It is classified as a restricted-use insecticide because of its toxicity to multiple nontarget species. To prevent nontarget species toxicity or the possibility of contamination, as with all pesticides, great care should be taken when applying methomyl-containing products for agricultural, residential, or other uses.

Concepts: Bacteria, Insect, Nitrogen, Vapor pressure, Insecticide, Partial pressure, Henry's law, Raoult's law

28

Microenvironmental conditions in infected, inflamed or damaged tissues are characterized by low levels of oxygen (hypoxia) and nutrients. Myeloid cells (mostly macrophages and neutrophils) account for 95% of the cells newly recruited into inflammatory sites, and exert their effector functions under these restrictive conditions. In the case of macrophages, adaptation to the surrounding tissue environment is underlined by their huge metabolic and functional plasticity, which allows them to critically participate in the maintenance of tissue homeostasis and the initiation and resolution of inflammatory processes under hypoxic conditions. Therefore, alterations in oxygen availability directly affect the macrophage functional state (polarization), a phenomenon that has been already illustrated in pathologies like cancer, atherosclerosis and obesity. This review summarizes recent advances on the molecular basis of macrophage sensing and response to changes in oxygen pressure, emphasizing the link among the hypoxia-induced signalling pathways, macrophage polarization and inflammatory pathologies.

Concepts: Immune system, Inflammation, Monocyte, Atherosclerosis, Macrophage, Hypoxia, Neutrophil granulocyte, Partial pressure

25

Our aims were to describe macro- and microvascular disease by the use of a combination of toe blood pressure (TBP) and transcutaneous oxygen pressure (TcPO2) measurements, and by this approach classify lower limb ulcers. One specific aim was to evaluate whether patients with diabetes had a more pronounced disturbance of the microcirculation compared to patients without known diabetes.

Concepts: Stroke, Ischemia, Gas, Limb, Partial pressure

23

The maximum height of a siphon is generally assumed to be dependent on barometric pressure-about 10 m at sea level. This limit arises because the pressure in a siphon above the upper reservoir level is below the ambient pressure, and when the height of a siphon approaches 10 m, the pressure at the crown of the siphon falls below the vapour pressure of water causing water to boil breaking the column. After breaking, the columns on either side are supported by differential pressure between ambient and the low-pressure region at the top of the siphon. Here we report an experiment of a siphon operating at sea level at a height of 15 m, well above 10 m. Prior degassing of the water prevented cavitation. This experiment provides conclusive evidence that siphons operate through gravity and molecular cohesion.

Concepts: Water, Pressure, Gas, Atmospheric pressure, Ocean, Vapor pressure, Partial pressure, Evaporation

15

Arterial oxygen partial pressure can increase during inspiration and decrease during expiration in the presence of a variable shunt fraction, such as with cyclical atelectasis, but it is generally presumed to remain constant within a respiratory cycle in the healthy lung. We measured arterial oxygen partial pressure continuously with a fast intra-vascular sensor in the carotid artery of anaesthetized, mechanically ventilated pigs, without lung injury. Here we demonstrate that arterial oxygen partial pressure shows respiratory oscillations in the uninjured pig lung, in the absence of cyclical atelectasis (as determined with dynamic computed tomography), with oscillation amplitudes that exceeded 50 mmHg, depending on the conditions of mechanical ventilation. These arterial oxygen partial pressure respiratory oscillations can be modelled from a single alveolar compartment and a constant oxygen uptake, without the requirement for an increased shunt fraction during expiration. Our results are likely to contribute to the interpretation of arterial oxygen respiratory oscillations observed during mechanical ventilation in the acute respiratory distress syndrome.

Concepts: Oxygen, Pulmonology, Blood, Pneumonia, Heart, Acute respiratory distress syndrome, Vein, Partial pressure

14

While bar-headed geese are renowned for migration at high altitude over the Himalayas, previous work on captive birds suggested that these geese are unable to maintain rates of oxygen consumption while running in severely hypoxic conditions. To investigate this paradox, we re-examined the running performance and heart rates of bar-headed geese and barnacle geese (a low altitude species) during exercise in hypoxia. Bar-headed geese (n = 7) were able to run at maximum speeds (determined in normoxia) for 15 minutes in severe hypoxia (7% O2; simulating the hypoxia at 8500 m) with mean heart rates of 466±8 beats min-1. Barnacle geese (n = 10), on the other hand, were unable to complete similar trials in severe hypoxia and their mean heart rate (316 beats.min-1) was significantly lower than bar-headed geese. In bar-headed geese, partial pressures of oxygen and carbon dioxide in both arterial and mixed venous blood were significantly lower during hypoxia than normoxia, both at rest and while running. However, measurements of blood lactate in bar-headed geese suggested that anaerobic metabolism was not a major energy source during running in hypoxia. We combined these data with values taken from the literature to estimate (i) oxygen supply, using the Fick equation and (ii) oxygen demand using aerodynamic theory for bar-headed geese flying aerobically, and under their own power, at altitude. This analysis predicts that the maximum altitude at which geese can transport enough oxygen to fly without environmental assistance ranges from 6,800 m to 8,900 m altitude, depending on the parameters used in the model but that such flights should be rare.

Concepts: Oxygen, Carbon dioxide, Blood, Vein, Hypoxia, Venous blood, Partial pressure, Geese

10

Ten healthy volunteers received oxygen for 1 min, 2 min and 3 min at 10 l.min(-1) via a face mask, or humidified oxygen at 60 l.min(-1) via nasal prongs (Optiflow™ ) with the mouth closed and with the mouth open. The mean (SD) end-tidal oxygen partial pressure after 3 min face mask and Optiflow oxygenation, with mouth closed and open, were: 88.5 (6.2) kPa; 85.6 (6.4) kPa and 48.7 (26.4) kPa, respectively, p = 0.001. The equivalent mean (SD) transcutaneous oxygen partial pressures were: 34.6 (5.4) kPa; 36.4 (6.5) kPa and 25.5 (15.7) kPa, respectively, p = 0.03. High-flow humidified nasal oxygenation for 3 min with the mouth closed was as effective as 3 min face mask oxygenation.

Concepts: Oxygen, Pressure, Vapor pressure, Partial pressure, Open set, Closed set

9

There is considerable interest in oxygen partial pressure (Po2) monitoring in physiology, and in tracking Po2 changes dynamically when it varies rapidly. For example, arterial Po2 ([Formula: see text]) can vary within the respiratory cycle in cyclical atelectasis (CA), where [Formula: see text] is thought to increase and decrease during inspiration and expiration, respectively. A sensor that detects these [Formula: see text] oscillations could become a useful diagnostic tool of CA during acute respiratory distress syndrome (ARDS).

Concepts: Oxygen, Pulmonology, Acute respiratory distress syndrome, Mechanical ventilation, Infant respiratory distress syndrome, Pulmonary contusion, Pulmonary alveolus, Partial pressure