SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Open-loop controller

155

In many applications entanglement must be distributed through noisy communication channels that unavoidably degrade it. Entanglement cannot be generated by local operations and classical communication (LOCC), implying that once it has been distributed it is not possible to recreate it by LOCC. Recovery of entanglement by purely local control is however not forbidden in the presence of non-Markovian dynamics, and here we demonstrate in two all-optical experiments that such entanglement restoration can even be achieved on-demand. First, we implement an open-loop control scheme based on a purely local operation, without acquiring any information on the environment; then, we use a closed-loop scheme in which the environment is measured, the outcome controling the local operations on the system. The restored entanglement is a manifestation of “hidden” quantum correlations resumed by the local control. Relying on local control, both schemes improve the efficiency of entanglement sharing in distributed quantum networks.

Concepts: Environment, Natural environment, Experiment, Control theory, Control, Process control, Feed-forward, Open-loop controller

0

Grid-connected inverters with LCL filters need high steady-state control accuracy, fast dynamic response performance, and strong robustness to guarantee the power quality. However, there are many problems in traditional control strategies that restrict improvements to control system performance, such as poor dynamic performance of traditional single-repetitive control, large ripples, low steady-state accuracy of inverter current feedback based repetitive dual-loop control or grid-current feedback based single-loop proportional-integral control. In this paper, a novel dual closed-loop repetitive control strategy based on grid current feedback is proposed for single-phase grid-connected inverters with LCL filters. The proportional-integral inner loop is stabilized by using an inherent one-beat delay achieved by digital controller. Based on the inner loop system, a detailed design scheme of a repetitive controller is presented, through which direct control of the grid current is realized, the reference is tracked perfectly to a zero phase shift, and high-attenuation gain is achieved in the high frequency range. In particular, the gird-voltage feed forward control and current reference feedforward control are adopted to suppress grid-voltage disturbance and increase dynamic tracking performance. Finally, the simulation and experimental results show that the proposed method has the advantages of high steady-state accuracy, fast dynamic response, and anti-disturbance ability.

Concepts: Control theory, Cybernetics, Feedback, Process control, PID controller, Controller, Feed-forward, Open-loop controller

0

In most of the existing studies, the frequency response in the variable speed wind turbines (VSWTs) is simply realized by changing the torque set-point via appropriate inputs such as frequency deviations signal. However, effective dynamics and systematic process design have not been comprehensively discussed yet. Accordingly, this paper proposes a proportional-derivative frequency controller and investigates its performance in a wind farm consisting of several VSWTs. A band-pass filter is deployed before the proposed controller to avoid responding to either steady state frequency deviations or high rate of change of frequency. To design the controller, the frequency model of the wind farm is first characterized. The proposed controller is then designed based on the obtained open loop system. The stability region associated with the controller parameters is analytically determined by decomposing the closed-loop system’s characteristic polynomial into the odd and even parts. The performance of the proposed controller is evaluated through extensive simulations in MATLAB/Simulink environment in a power system comprising a high penetration of VSWTs equipped with the proposed controller. Finally, based on the obtained feasible area and appropriate objective function, the optimal values associated with the controller parameters are determined using the genetic algorithm (GA).

Concepts: Control theory, Cybernetics, Polynomial, Filter, Wind farm, Band-pass filter, Wind turbine, Open-loop controller

0

This paper presents a novel methodology of generic nature for controlling nonlinear systems, using inverse radial basis function neural network models, which may combine diverse data originating from various sources. The algorithm starts by applying the particle swarm optimization-based non-symmetric variant of the fuzzy means (PSO-NSFM) algorithm so that an approximation of the inverse system dynamics is obtained. PSO-NSFM offers models of high accuracy combined with small network structures. Next, the applicability domain concept is suitably tailored and embedded into the proposed control structure in order to ensure that extrapolation is avoided in the controller predictions. Finally, an error correction term, estimating the error produced by the unmodeled dynamics and/or unmeasured external disturbances, is included to the control scheme to increase robustness. The resulting controller guarantees bounded input-bounded state (BIBS) stability for the closed loop system when the open loop system is BIBS stable. The proposed methodology is evaluated on two different control problems, namely, the control of an experimental armature-controlled direct current (DC) motor and the stabilization of a highly nonlinear simulated inverted pendulum. For each one of these problems, appropriate case studies are tested, in which a conventional neural controller employing inverse models and a PID controller are also applied. The results reveal the ability of the proposed control scheme to handle and manipulate diverse data through a data fusion approach and illustrate the superiority of the method in terms of faster and less oscillatory responses.

Concepts: Scientific method, Control theory, Feedback, PID controller, Controller, Control engineering, Neural networks, Open-loop controller

0

We quantified, via complexity analysis, the postural stability of healthy people from a wide age range. Thirty-five healthy people aged 18-72 performed three tasks while balancing on one foot on a force plate: standard balancing task, mental task (balancing while answering basic arithmetic questions), and knot-tying task (balancing while tying two knots in a piece of ribbon). Mediolateral force trajectories were analyzed to determine control strategy via Hurst exponents, Lyapunov exponents, Root Mean Square, and Kolmogorov complexity, and phase-space plots. We found increased pattern repetition in balancing with increased age, as evidenced by the emergence of a double attractor pattern in phase-space plots and the increase of Hurst exponents with age from approximately 0.3 to 0.8. As people age, they tend to develop strong feed-forward control strategies for balancing, and lose the complexity of micro movements intrinsic to young age. There is an open-loop control strategy for balancing that emerges in older adulthood, and there are attractors inherent to balancing which begin to develop in middle age.

Concepts: Middle Ages, Emergence, Complexity, Control theory, Root mean square, Feed-forward, Kolmogorov complexity, Open-loop controller

0

This paper focus on the power fluctuations of the virtual synchronous generator(VSG) during the transition process. An improved virtual synchronous generator(IVSG) control strategy based on feed-forward compensation is proposed. Adjustable parameter of the compensation section can be modified to achieve the goal of reducing the order of the system. It can effectively suppress the power fluctuations of the VSG in transient process. To verify the effectiveness of the proposed control strategy for distributed energy resources inverter, the simulation model is set up in MATLAB/SIMULINK platform and physical experiment platform is established. Simulation and experiment results demonstrate the effectiveness of the proposed IVSG control strategy.

Concepts: Research, English-language films, Experiment, Control theory, Model predictive control, Open-loop controller

0

We extend a spatially explicit ABM developed previously to investigate entrainment and control of the emergent behaviour of a population of synchronized oscillating cells in a microfluidic chamber. Unlike most of the work in models of control of cellular systems which focus on temporal changes, we model individual cells with spatial dependencies which may contribute to certain behavioural responses. We use the model to investigate the response of both open-loop and closed-loop strategies, such as proportional, proportional-integral and proportional-integral-derivative control, to heterogeinities and growth in the cell population, variations of the control parameters and spatial effects such as diffusion in the spatially explicit setting of a microfluidic chamber setup. We show that, as expected from the theory of phase locking in dynamical systems, open loop control can only entrain the cell population in a subset of forcing periods, with a wide variety of dynamical behaviours obtained outside these regions of entrainment. Closed-loop control is shown instead to guarantee entrainment in a much wider region of control parameter space although presenting limitations when the population size increases over a certain threshold. In silico tracking experiments are also performed to validate the ability of classical control approaches to achieve other reference behaviours such as a desired constant output or a linearly varying one. All simulations are carried out in BSim, an advanced agent-based simulator of microbial population which is here extended ad hoc to include the effects of control strategies acting onto the population.

Concepts: Bacteria, Mathematics, Population ecology, Systems theory, Control theory, Behavior, Cellular network, Open-loop controller

0

The CONCERT-CL closed-loop infusion system designed by VERYARK Technology Co., Ltd. (Guangxi, China) is an innovation using TCI combined with closed-loop controlled intravenous anesthesia under the guide of BIS. In this study we performed a randomized, controlled, multicenter study to compare closed-loop control and open-loop control of propofol by using the CONCERT-CL closed-loop infusion system.

Concepts: Clinical trial, The Canon of Medicine, Control theory, Control, Process control, Feed-forward, Multicenter trial, Open-loop controller

0

UV irradiation and advanced oxidation processes have been recently regarded as promising solutions in removing polycyclic aromatic hydrocarbons (PAHs) from marine oily wastewater. However, such treatment methods are generally not sufficiently understood in terms of reaction mechanisms, process simulation and process control. These deficiencies can drastically hinder their application in shipping and offshore petroleum industries which produce bilge/ballast water and produced water as the main streams of marine oily wastewater. In this study, the factorial design of experiment was carried out to investigate the degradation mechanism of a typical PAH, namely naphthalene, under UV irradiation in seawater. Based on the experimental results, a three-layer feed-forward artificial neural network simulation model was developed to simulate the treatment process and to forecast the removal performance. A simulation-based dynamic mixed integer nonlinear programming (SDMINP) approach was then proposed to intelligently control the treatment process by integrating the developed simulation model, genetic algorithm and multi-stage programming. The applicability and effectiveness of the developed approach were further tested though a case study. The experimental results showed that the influences of fluence rate and temperature on the removal of naphthalene were greater than those of salinity and initial concentration. The developed simulation model could well predict the UV-induced removal process under varying conditions. The case study suggested that the SDMINP approach, with the aid of the multi-stage control strategy, was able to significantly reduce treatment cost when comparing to the traditional single-stage process optimization. The developed approach and its concept/framework have high potential of applicability in other environmental fields where a treatment process is involved and experimentation and modeling are used for process simulation and control.

Concepts: Water, Polycyclic aromatic hydrocarbon, Hydrocarbon, Control theory, Model predictive control, Chemical engineering, Naphthalene, Open-loop controller

0

The performance of bioreactors is not only determined by productivity but also by process quality, which is mainly determined by variances in the process variables. As fluctuations in these quantities directly affect the variability in the product properties, combatting distortions is the main task of practical quality assurance. The straightforward way of reducing this variability is keeping the product formation process tightly under control. Purpose of this keynote is to show that there is enough evidence in literature showing that the performance of the fermentation processes can significantly be improved by feedback control. Most of the currently used open loop control procedures can be replaced by relatively simple feedback techniques. It is shown by practical examples that such a retrofitting does not require significant changes in the well-established equipment. Feedback techniques are best in assuring high reproducibility of the industrial cultivation processes and thus in assuring the quality of their products. Many developments in supervising and controlling industrial fermentations can directly be taken over in manufacturing processes. Even simple feedback controllers can efficiently improve the product quality. It’s the time now that manufacturers follow the developments in most other industries and improve process quality by automatic feedback control.

Concepts: Improve, Management, Control theory, Control system, Controller, Manufacturing, Feed-forward, Open-loop controller