Discover the most talked about and latest scientific content & concepts.

Concept: Neurotransmitter


This review, one of a series of articles, tries to make sense of optogenetics, a recently developed technology that can be used to control the activity of genetically defined neurons with light. Cells are first genetically engineered to express a light-sensitive opsin, which is typically an ion channel, pump, or G protein-coupled receptor. When engineered cells are then illuminated with light of the correct frequency, opsin-bound retinal undergoes a conformational change that leads to channel opening or pump activation, cell depolarization or hyperpolarization, and neural activation or silencing. Since the advent of optogenetics many different opsin variants have been discovered or engineered, and it is now possible to stimulate or inhibit neuronal activity or intracellular signaling pathways on fast or slow timescales with a variety of different wavelengths of light. Optogenetics has been successfully employed to enhance our understanding of the neural circuit dysfunction underlying mood disorders, addiction, and Parkinson’s disease, and has enabled us to achieve a better understanding of the neural circuits mediating normal behavior. It has revolutionized the field of neuroscience, and has enabled a new generation of experiments that probe the causal roles of specific neural circuit components.

Concepts: Neurotransmitter, Dopamine, Membrane potential, DNA, Action potential, Cell membrane, Nervous system, Signal transduction


Non-thermal microwave/lower frequency electromagnetic fields (EMFs) act via voltage-gated calcium channel (VGCC) activation. Calcium channel blockers block EMF effects and several types of additional evidence confirm this mechanism. Low intensity microwave EMFs have been proposed to produce neuropsychiatric effects, sometimes called microwave syndrome, and the focus of this review is whether these are indeed well documented and consistent with the known mechanism(s) of action of such EMFs. VGCCs occur in very high densities throughout the nervous system and have near universal roles in release of neurotransmitters and neuroendocrine hormones. Soviet and Western literature shows that much of the impact of non-thermal microwave exposures in experimental animals occurs in the brain and peripheral nervous system, such that nervous system histology and function show diverse and substantial changes. These may be generated through roles of VGCC activation, producing excessive neurotransmitter/neuroendocrine release as well as oxidative/nitrosative stress and other responses. Excessive VGCC activity has been shown from genetic polymorphism studies to have roles in producing neuropsychiatric changes in humans. Two U.S. government reports from the 1970’s-80’s provide evidence for many neuropsychiatric effects of non-thermal microwave EMFs, based on occupational exposure studies. 18 more recent epidemiological studies, provide substantial evidence that microwave EMFs from cell/mobile phone base stations, excessive cell/mobile phone usage and from wireless smart meters can each produce similar patterns of neuropsychiatric effects, with several of these studies showing clear dose-response relationships. Lesser evidence from 6 additional studies suggests that short wave, radio station, occupational and digital TV antenna exposures may produce similar neuropsychiatric effects. Among the more commonly reported changes are sleep disturbance/insomnia, headache, depression/depressive symptoms, fatigue/tiredness,dysesthesia, concentration/attention dysfunction, memory changes, dizziness, irritability, loss of appetite/body weight, restlessness/anxiety, nausea, skin burning/tingling/dermographism and EEG changes. In summary, then, the mechanism of action of microwave EMFs, the role of the VGCCs in the brain, the impact of non-thermal EMFs on the brain, extensive epidemiological studies performed over the past 50 years, and five criteria testing for causality, all collectively show that various non-thermal microwave EMF exposures produce diverse neuropsychiatric effects.

Concepts: Calcium channel blocker, Neurotransmitter, Human brain, Radio, Brain, Central nervous system, Neuron, Nervous system


An aversion to harming others is a core component of human morality and is disturbed in antisocial behavior [1-4]. Deficient harm aversion may underlie instrumental and reactive aggression, which both feature in psychopathy [5]. Past work has highlighted monoaminergic influences on aggression [6-11], but a mechanistic account of how monoamines regulate antisocial motives remains elusive. We previously observed that most people show a greater aversion to inflicting pain on others than themselves [12]. Here, we investigated whether this hyperaltruistic disposition is susceptible to monoaminergic control. We observed dissociable effects of the serotonin reuptake inhibitor citalopram and the dopamine precursor levodopa on decisions to inflict pain on oneself and others for financial gain. Computational models of choice behavior showed that citalopram increased harm aversion for both self and others, while levodopa reduced hyperaltruism. The effects of citalopram were stronger than those of levodopa. Crucially, neither drug influenced the physical perception of pain or other components of choice such as motor impulsivity or loss aversion [13, 14], suggesting a direct and specific influence of serotonin and dopamine on the valuation of harm. We also found evidence for dose dependency of these effects. Finally, the drugs had dissociable effects on response times, with citalopram enhancing behavioral inhibition and levodopa reducing slowing related to being responsible for another’s fate. These distinct roles of serotonin and dopamine in modulating moral behavior have implications for potential treatments of social dysfunction that is a common feature as well as a risk factor for many psychiatric disorders.

Concepts: Reuptake inhibitor, Antisocial personality disorder, Morality, Serotonin, Mental disorder, Dopamine, Selective serotonin reuptake inhibitor, Neurotransmitter


Excess sugar consumption has been shown to contribute directly to weight gain, thus contributing to the growing worldwide obesity epidemic. Interestingly, increased sugar consumption has been shown to repeatedly elevate dopamine levels in the nucleus accumbens (NAc), in the mesolimbic reward pathway of the brain similar to many drugs of abuse. We report that varenicline, an FDA-approved nicotinic acetylcholine receptor (nAChR) partial agonist that modulates dopamine in the mesolimbic reward pathway of the brain, significantly reduces sucrose consumption, especially in a long-term consumption paradigm. Similar results were observed with other nAChR drugs, namely mecamylamine and cytisine. Furthermore, we show that long-term sucrose consumption increases α4β2 * and decreases α6β2* nAChRs in the nucleus accumbens, a key brain region associated with reward. Taken together, our results suggest that nAChR drugs such as varenicline may represent a novel treatment strategy for reducing sugar consumption.

Concepts: Ventral tegmental area, Muscarinic acetylcholine receptor, Nicotine, Neurotransmitter, Mesolimbic pathway, Acetylcholine, Dopamine, Nicotinic acetylcholine receptor


We describe a disease encompassing infantile-onset movement disorder (including severe parkinsonism and nonambulation), mood disturbance, autonomic instability, and developmental delay, and we describe evidence supporting its causation by a mutation in SLC18A2 (which encodes vesicular monoamine transporter 2 [VMAT2]). VMAT2 translocates dopamine and serotonin into synaptic vesicles and is essential for motor control, stable mood, and autonomic function. Treatment with levodopa was associated with worsening, whereas treatment with direct dopamine agonists was followed by immediate ambulation, near-complete correction of the movement disorder, and resumption of development.

Concepts: Monoamine neurotransmitter, Parkinson's disease, Transport, Monoamine transporter, Dopamine, Norepinephrine, Neurotransmitter, Serotonin


The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structure of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.

Concepts: Acetylcholine receptor, Nicotinic acetylcholine receptor, Atropine, Nervous system, Receptor, Neurotransmitter, Acetylcholine, Muscarinic acetylcholine receptor


Dopamine signaling is implicated in reinforcement learning, but the neural substrates targeted by dopamine are poorly understood. We bypassed dopamine signaling itself and tested how optogenetic activation of dopamine D1 or D2 receptor–expressing striatal projection neurons influenced reinforcement learning in mice. Stimulating D1 receptor–expressing neurons induced persistent reinforcement, whereas stimulating D2 receptor–expressing neurons induced transient punishment, indicating that activation of these circuits is sufficient to modify the probability of performing future actions.

Concepts: Reinforcement, Reinforcement learning, Dopamine, Neurotransmitter, Operant conditioning, Nervous system, Neuron, Dopamine receptor


Accumulated evidence has suggested that potentiation of cortical GABAergic inhibitory neurotransmission may be a key mechanism in the treatment of schizophrenia. However, the downstream molecular mechanisms related to GABA potentiation remain unexplored. Recent studies have suggested that dopamine D2 receptor antagonists, which are used in the clinical treatment of schizophrenia, modulate protein kinase B (Akt)/glycogen synthase kinase (GSK)-3 signaling. Here we report that activation of GABAB receptors significantly inhibits Akt/GSK-3 signaling in a beta-arrestin-dependent pathway. Agonist stimulation of GABAB receptors enhances the phosphorylation of Akt (Thr-308) and enhances the phosphorylation of GSK-3alpha (Ser-21)/beta (Ser-9) in both HEK-293T cells expressing GABAB receptors and rat hippocampal slices. Furthermore, knocking down the expression of beta-arrestin2 using siRNA abolishes the GABAB receptor-mediated modulation of GSK-3 signaling. Our data may help to identify potentially novel targets through which GABAB receptor agents may exert therapeutic effects in the treatment of schizophrenia.

Concepts: GABAB receptor, Neurotransmitter, Dopamine receptor D2, Dopamine receptor, Receptor, Receptor antagonist, Schizophrenia, Signal transduction


The anti-alcoholism medication, disulfiram (Antabuse), decreases cocaine use in humans regardless of concurrent alcohol consumption and facilitates cocaine sensitization in rats, but the functional targets are unknown. Disulfiram inhibits dopamine β-hydroxylase (DBH), the enzyme that converts dopamine (DA) to norepinephrine (NE) in noradrenergic neurons. The goal of this study was to test the effects of chronic genetic or pharmacological DBH inhibition on behavioral responses to cocaine using DBH knockout (Dbh -/-) mice, disulfiram, and the selective DBH inhibitor, nepicastat. Locomotor activity was measured in control (Dbh +/-) and Dbh -/- mice during a 5 day regimen of saline+saline, disulfiram+saline, nepicastat+saline, saline+cocaine, disulfiram+cocaine, or nepicastat+cocaine. After a 10 day withdrawal period, all groups were administered cocaine, and locomotor activity and stereotypy were measured. Drug-naïve Dbh -/- mice were hypersensitive to cocaine-induced locomotion and resembled cocaine-sensitized Dbh +/- mice. Chronic disulfiram administration facilitated cocaine-induced locomotion in some mice and induced stereotypy in others during the development of sensitization, while cocaine-induced stereotypy was evident in all nepicastat-treated mice. Cocaine-induced stereotypy was profoundly increased in the disulfiram+cocaine, nepicastat+cocaine, and nepicastat+saline groups upon cocaine challenge after withdrawal in Dbh +/- mice. Disulfiram or nepicastat treatment had no effect on behavioral responses to cocaine in Dbh -/- mice. These results demonstrate that chronic DBH inhibition facilitates behavioral responses to cocaine, although different methods of inhibition (genetic vs. non-selective inhibitor vs. selective inhibitor) enhance qualitatively different cocaine-induced behaviors.

Concepts: Neurotransmitter, Alcoholism, Nicotine, Inhibitor, Cocaine, Enzyme inhibitor, Dopamine, Norepinephrine


The cutaneous silent period (CSP) is a spinal inhibitory reflex primarily mediated by A-delta fibers. Prolonged CSPs have been reported in patients with restless legs syndrome (RLS) and idiopathic Parkinson’s disease (IPD). Dopaminergic medication normalizes the CSP, concurring with the effect of levodopa on CSPs. To date, CSPs have not been extensively studied in patients with multiple system atrophy (MSA). The purpose of this study was to confirm abnormal CSP findings in a group of MSA patients and to affirm the lack of influence of levodopa on CSPs during long-term treatment.

Concepts: Parkinsonism, Multiple system atrophy, Neurotransmitter, Ropinirole, Pramipexole, Restless legs syndrome, Parkinson's disease, Dopamine