SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Muscle

540

We performed a systematic review, meta-analysis and meta-regression to determine if dietary protein supplementation augments resistance exercise training (RET)-induced gains in muscle mass and strength.

Concepts: Nutrition, Muscle, Physical exercise, Exercise, Strength training, Weight training, Meta-analysis, Isometric exercise

485

Nutrient timing is a popular nutritional strategy involves the consumption of combinations of nutrients–primarily protein and carbohydrate–in and around an exercise session. Some have claimed that this approach can produce dramatic improvements in body composition. It has even been postulated that the timing of nutritional consumption may be more important than the absolute daily intake of nutrients. The post-exercise period is widely considered the most critical part of nutrient timing. Theoretically, consuming the proper ratio of nutrients during this time not only initiates the rebuilding of damaged muscle tissue and restoration of energy reserves, but it does so in a supercompensated fashion that enhances both body composition and exercise performance. Several researchers have made reference to an anabolic “window of opportunity” whereby a limited time exists after training to optimize training-related muscular adaptations. However, the importance - and even the existence - of a post-exercise ‘window’ can vary according to a number of factors. Not only is nutrient timing research open to question in terms of applicability, but recent evidence has directly challenged the classical view of the relevance of post-exercise nutritional intake with respect to anabolism. Therefore, the purpose of this paper will be twofold: 1) to review the existing literature on the effects of nutrient timing with respect to post-exercise muscular adaptations, and; 2) to draw relevant conclusions that allow practical, evidence-based nutritional recommendations to be made for maximizing the anabolic response to exercise.

Concepts: Metabolism, Nutrition, Muscle, Nutrient, Vitamin, Ontology, Muscular system, Existence

329

It is evident that the gut microbiota and factors that influence its composition and activity effect human metabolic, immunological and developmental processes. We previously reported that extreme physical activity with associated dietary adaptations, such as that pursued by professional athletes, is associated with changes in faecal microbial diversity and composition relative to that of individuals with a more sedentary lifestyle. Here we address the impact of these factors on the functionality/metabolic activity of the microbiota which reveals even greater separation between exercise and a more sedentary state.

Concepts: Immune system, Bacteria, Gut flora, Metabolism, Nutrition, Obesity, Muscle, Overweight

327

The currently accepted amount of protein required to achieve maximal stimulation of myofibrillar protein synthesis (MPS) following resistance exercise is 20-25 g. However, the influence of lean body mass (LBM) on the response of MPS to protein ingestion is unclear. Our aim was to assess the influence of LBM, both total and the amount activated during exercise, on the maximal response of MPS to ingestion of 20 or 40 g of whey protein following a bout of whole-body resistance exercise. Resistance-trained males were assigned to a group with lower LBM (≤65 kg; LLBM n = 15) or higher LBM (≥70 kg; HLBM n = 15) and participated in two trials in random order. MPS was measured with the infusion of (13)C6-phenylalanine tracer and collection of muscle biopsies following ingestion of either 20 or 40 g protein during recovery from a single bout of whole-body resistance exercise. A similar response of MPS during exercise recovery was observed between LBM groups following protein ingestion (20 g - LLBM: 0.048 ± 0.018%·h(-1); HLBM: 0.051 ± 0.014%·h(-1); 40 g - LLBM: 0.059 ± 0.021%·h(-1); HLBM: 0.059 ± 0.012%·h(-1)). Overall (groups combined), MPS was stimulated to a greater extent following ingestion of 40 g (0.059 ± 0.020%·h(-1)) compared with 20 g (0.049 ± 0.020%·h(-1); P = 0.005) of protein. Our data indicate that ingestion of 40 g whey protein following whole-body resistance exercise stimulates a greater MPS response than 20 g in young resistance-trained men. However, with the current doses, the total amount of LBM does not seem to influence the response.

Concepts: Metabolism, Muscle, Physical exercise, Exercise, Actin, Muscle contraction, Peptide synthesis, Muscle biopsy

320

MtDNA mutator mice exhibit marked features of premature aging. We find that these mice treated from age of ≈100 days with the mitochondria-targeted antioxidant SkQ1 showed a delayed appearance of traits of aging such as kyphosis, alopecia, lowering of body temperature, body weight loss, as well as ameliorated heart, kidney and liver pathologies. These effects of SkQ1 are suggested to be related to an alleviation of the effects of an enhanced reactive oxygen species (ROS) level in mtDNA mutator mice: the increased mitochondrial ROS released due to mitochondrial mutations probably interact with polyunsaturated fatty acids in cardiolipin, releasing malondialdehyde and 4-hydroxynonenal that form protein adducts and thus diminishes mitochondrial functions. SkQ1 counteracts this as it scavenges mitochondrial ROS. As the results, the normal mitochondrial ultrastructure is preserved in liver and heart; the phosphorylation capacity of skeletal muscle mitochondria as well as the thermogenic capacity of brown adipose tissue is also improved. The SkQ1-treated mice live significantly longer (335 versus 290 days). These data may be relevant in relation to treatment of mitochondrial diseases particularly and the process of aging in general.

Concepts: Oxygen, Nutrition, Mitochondrion, Obesity, Oxidative phosphorylation, Reactive oxygen species, Muscle, Ageing

305

There are substantial differences in the distribution of adipose tissue between women and men. We assessed the sex-specific relationships and their differences between measures of general and central adiposity and the risk of incident myocardial infarction (MI).

Concepts: Myocardial infarction, Obesity, Muscle, Gender, Adipose tissue

295

A dietary protein intake higher than the Recommended Dietary Allowance during an energy deficit helps to preserve lean body mass (LBM), particularly when combined with exercise.

Concepts: Protein, Metabolism, Nutrition, Energy, Obesity, Muscle, Mass, Diet

261

Artificial muscles hold promise for safe and powerful actuation for myriad common machines and robots. However, the design, fabrication, and implementation of artificial muscles are often limited by their material costs, operating principle, scalability, and single-degree-of-freedom contractile actuation motions. Here we propose an architecture for fluid-driven origami-inspired artificial muscles. This concept requires only a compressible skeleton, a flexible skin, and a fluid medium. A mechanical model is developed to explain the interaction of the three components. A fabrication method is introduced to rapidly manufacture low-cost artificial muscles using various materials and at multiple scales. The artificial muscles can be programed to achieve multiaxial motions including contraction, bending, and torsion. These motions can be aggregated into systems with multiple degrees of freedom, which are able to produce controllable motions at different rates. Our artificial muscles can be driven by fluids at negative pressures (relative to ambient). This feature makes actuation safer than most other fluidic artificial muscles that operate with positive pressures. Experiments reveal that these muscles can contract over 90% of their initial lengths, generate stresses of ∼600 kPa, and produce peak power densities over 2 kW/kg-all equal to, or in excess of, natural muscle. This architecture for artificial muscles opens the door to rapid design and low-cost fabrication of actuation systems for numerous applications at multiple scales, ranging from miniature medical devices to wearable robotic exoskeletons to large deployable structures for space exploration.

Concepts: Energy, Density, Fluid dynamics, Muscle, Fluid, Robotics, Space exploration, Exoskeleton

259

Chronic supplementation with creatine monohydrate has been shown to promote increases in total intramuscular creatine, phosphocreatine, skeletal muscle mass, lean body mass and muscle fiber size. Furthermore, there is robust evidence that muscular strength and power will also increase after supplementing with creatine. However, it is not known if the timing of creatine supplementation will affect the adaptive response to exercise. Thus, the purpose of this investigation was to determine the difference between pre versus post exercise supplementation of creatine on measures of body composition and strength.

Concepts: Muscle, Physical exercise, Cardiac muscle, Glycogen, Myosin, Muscular system, Acetylcholine, Exercise physiology

254

The purpose of this review was to determine whether past research provides conclusive evidence about the effects of type and timing of ingestion of specific sources of protein by those engaged in resistance weight training. Two essential, nutrition-related, tenets need to be followed by weightlifters to maximize muscle hypertrophy: the consumption of 1.2-2.0 g protein.kg -1 of body weight, and >=44-50 kcal.kg-1 of body weight. Researchers have tested the effects of timing of protein supplement ingestion on various physical changes in weightlifters. In general, protein supplementation pre- and post-workout increases physical performance, training session recovery, lean body mass, muscle hypertrophy, and strength. Specific gains, differ however based on protein type and amounts. Studies on timing of consumption of milk have indicated that fat-free milk post-workout was effective in promoting increases in lean body mass, strength, muscle hypertrophy and decreases in body fat. The leucine content of a protein source has an impact on protein synthesis, and affects muscle hypertrophy. Consumption of 3–4 g of leucine is needed to promote maximum protein synthesis. An ideal supplement following resistance exercise should contain whey protein that provides at least 3 g of leucine per serving. A combination of a fast-acting carbohydrate source such as maltodextrin or glucose should be consumed with the protein source, as leucine cannot modulate protein synthesis as effectively without the presence of insulin. Such a supplement post-workout would be most effective in increasing muscle protein synthesis, resulting in greater muscle hypertrophy and strength. In contrast, the consumption of essential amino acids and dextrose appears to be most effective at evoking protein synthesis prior to rather than following resistance exercise. To further enhance muscle hypertrophy and strength, a resistance weight- training program of at least 10–12 weeks with compound movements for both upper and lower body exercises should be followed.

Concepts: Protein, Amino acid, Glucose, Muscle, Physical exercise, Strength training, Exercise physiology, Bodybuilding