SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Michael Gazzaniga

258

A positivity advantage is known in emotional word recognition in that positive words are consistently processed faster and with fewer errors compared to emotionally neutral words. A similar advantage is not evident for negative words. Results of divided visual field studies, where stimuli are presented in either the left or right visual field and are initially processed by the contra-lateral brain hemisphere, point to a specificity of the language-dominant left hemisphere. The present study examined this effect by showing that the intake of caffeine further enhanced the recognition performance of positive, but not negative or neutral stimuli compared to a placebo control group. Because this effect was only present in the right visual field/left hemisphere condition, and based on the close link between caffeine intake and dopaminergic transmission, this result points to a dopaminergic explanation of the positivity advantage in emotional word recognition.

Concepts: Integer, Michael Gazzaniga, Psychology, French Revolution, Right-wing politics, Left-wing politics, Visual field, Political spectrum

28

Hemispheric lateralization for language production and its relationships with manual preference and manual preference strength were studied in a sample of 297 subjects, including 153 left-handers (LH). A hemispheric functional lateralization index (HFLI) for language was derived from fMRI acquired during a covert sentence generation task as compared with a covert word list recitation. The multimodal HFLI distribution was optimally modeled using a mixture of 3 and 4 Gaussian functions in right-handers (RH) and LH, respectively. Gaussian function parameters helped to define 3 types of language hemispheric lateralization, namely “Typical” (left hemisphere dominance with clear positive HFLI values, 88% of RH, 78% of LH), “Ambilateral” (no dominant hemisphere with HFLI values close to 0, 12% of RH, 15% of LH) and “Strongly-atypical” (right-hemisphere dominance with clear negative HFLI values, 7% of LH). Concordance between dominant hemispheres for hand and for language did not exceed chance level, and most of the association between handedness and language lateralization was explained by the fact that all Strongly-atypical individuals were left-handed. Similarly, most of the relationship between language lateralization and manual preference strength was explained by the fact that Strongly-atypical individuals exhibited a strong preference for their left hand. These results indicate that concordance of hemispheric dominance for hand and for language occurs barely above the chance level, except in a group of rare individuals (less than 1% in the general population) who exhibit strong right hemisphere dominance for both language and their preferred hand. They call for a revisit of models hypothesizing common determinants for handedness and for language dominance.

Concepts: Popular psychology, Right-handedness, Roger Wolcott Sperry, Michael Gazzaniga, Ambidexterity, Handedness, Lateralization of brain function, Left-handedness

16

In extensive studies with two split-brain patients we replicate the standard finding that stimuli cannot be compared across visual half-fields, indicating that each hemisphere processes information independently of the other. Yet, crucially, we show that the canonical textbook findings that a split-brain patient can only respond to stimuli in the left visual half-field with the left hand, and to stimuli in the right visual half-field with the right hand and verbally, are not universally true. Across a wide variety of tasks, split-brain patients with a complete and radiologically confirmed transection of the corpus callosum showed full awareness of presence, and well above chance-level recognition of location, orientation and identity of stimuli throughout the entire visual field, irrespective of response type (left hand, right hand, or verbally). Crucially, we used confidence ratings to assess conscious awareness. This revealed that also on high confidence trials, indicative of conscious perception, response type did not affect performance. These findings suggest that severing the cortical connections between hemispheres splits visual perception, but does not create two independent conscious perceivers within one brain.

Concepts: Cerebral cortex, Mind, Neuroscience, Michael Gazzaniga, Corpus callosotomy, Consciousness, Split-brain, Corpus callosum

7

The hemispheric lateralization of certain faculties in the human brain has long been held to be beneficial for functioning. However, quantitative relationships between the degree of lateralization in particular brain regions and the level of functioning have yet to be established. Here we demonstrate that two distinct forms of functional lateralization are present in the left vs. the right cerebral hemisphere, with the left hemisphere showing a preference to interact more exclusively with itself, particularly for cortical regions involved in language and fine motor coordination. In contrast, right-hemisphere cortical regions involved in visuospatial and attentional processing interact in a more integrative fashion with both hemispheres. The degree of lateralization present in these distinct systems selectively predicted behavioral measures of verbal and visuospatial ability, providing direct evidence that lateralization is associated with enhanced cognitive ability.

Concepts: Brain, Cerebrum, Roger Wolcott Sperry, Michael Gazzaniga, Psychology, Lateralization of brain function, Human brain, Cerebral cortex

5

Fifty years ago Gazzaniga and coworkers published a seminal article that discussed the separate roles of the cerebral hemispheres in humans. Today, the study of interhemispheric communication is facilitated by a battery of novel data analysis techniques drawn from across disciplinary boundaries, including dynamic systems theory and network theory. These techniques enable the characterization of dynamic changes in the brain’s functional connectivity, thereby providing an unprecedented means of decoding interhemispheric communication. Here, we illustrate the use of these techniques to examine interhemispheric coordination in healthy human participants performing a split visual field experiment in which they process lexical stimuli. We find that interhemispheric coordination is greater when lexical information is introduced to the right hemisphere and must subsequently be transferred to the left hemisphere for language processing than when it is directly introduced to the language-dominant (left) hemisphere. Further, we find that putative functional modules defined by coherent interhemispheric coordination come online in a transient manner, highlighting the underlying dynamic nature of brain communication. Our work illustrates that recently developed dynamic, network-based analysis techniques can provide novel and previously unapproachable insights into the role of interhemispheric coordination in cognition.

Concepts: Brain, Systems theory, Human brain, Data analysis, Cerebrum, Michael Gazzaniga, Cerebral hemisphere, Cerebral cortex

4

After decades of research, the influence of prenatal testosterone on brain lateralization is still elusive, whereas the influence of pubertal testosterone on functional brain lateralization has not been investigated, although there is increasing evidence that testosterone affects the brain in puberty. We performed a longitudinal study, investigating the relationship between prenatal testosterone concentrations in amniotic fluid, pubertal testosterone concentrations in saliva, and brain lateralization (measured with functional Transcranial Doppler ultrasonography (fTCD)) of the Mental Rotation, Chimeric Faces and Word Generation tasks. Thirty boys and 30 girls participated in this study at the age of 15 years. For boys, we found a significant interaction effect between prenatal and pubertal testosterone on lateralization of Mental Rotation and Chimeric Faces. In the boys with low prenatal testosterone levels, pubertal testosterone was positively related to the strength of lateralization in the right hemisphere, while in the boys with high prenatal testosterone levels, pubertal testosterone was negatively related to the strength of lateralization. For Word Generation, pubertal testosterone was negatively related to the strength of lateralization in the left hemisphere in boys. For girls, we did not find any significant effects, possibly because their pubertal testosterone levels were in many cases below quantification limit. To conclude, prenatal and pubertal testosterone affect lateralization in a task-specific way. Our findings cannot be explained by simple models of prenatal testosterone affecting brain lateralization in a similar way for all tasks. We discuss alternative models involving age dependent effects of testosterone, with a role for androgen receptor distribution and efficiency.

Concepts: Medical ultrasonography, Roger Wolcott Sperry, Cerebrum, Michael Gazzaniga, Effect, Affect, Human brain, Testosterone

4

Neuroimaging studies suggest greater involvement of the left parietal lobe in sign language compared to speech production. This stronger activation might be linked to the specific demands of sign encoding and proprioceptive monitoring. In Experiment 1 we investigate hemispheric lateralization during sign and speech generation in hearing native users of English and British Sign Language (BSL). Participants exhibited stronger lateralization during BSL than English production. In Experiment 2 we investigated whether this increased lateralization index could be due exclusively to the higher motoric demands of sign production. Sign naïve participants performed a phonological fluency task in English and a non-sign repetition task. Participants were left lateralized in the phonological fluency task but there was no consistent pattern of lateralization for the non-sign repetition in these hearing non-signers. The current data demonstrate stronger left hemisphere lateralization for producing signs than speech, which was not primarily driven by motoric articulatory demands.

Concepts: Roger Wolcott Sperry, Michael Gazzaniga, Linguistics, Lateralization of brain function, Parietal lobe, Cerebrum, British Sign Language, Language

3

The split-brain phenomenon is caused by the surgical severing of the corpus callosum, the main route of communication between the cerebral hemispheres. The classical view of this syndrome asserts that conscious unity is abolished. The left hemisphere consciously experiences and functions independently of the right hemisphere. This view is a cornerstone of current consciousness research. In this review, we first discuss the evidence for the classical view. We then propose an alternative, the ‘conscious unity, split perception’ model. This model asserts that a split brain produces one conscious agent who experiences two parallel, unintegrated streams of information. In addition to changing our view of the split-brain phenomenon, this new model also poses a serious challenge for current dominant theories of consciousness.

Concepts: Cerebral hemisphere, Consciousness, Qualia, Mind, Split-brain, Michael Gazzaniga, Cerebral cortex, Corpus callosum

3

In most people, language is processed predominantly by the left hemisphere of the brain, but we do not know how or why. A popular view is that developmental language disorders result from a poorly lateralized brain, but until recently, evidence has been weak and indirect. Modern neuroimaging methods have made it possible to study normal and abnormal development of lateralized function in the developing brain and have confirmed links with language and literacy impairments. However, there is little evidence that weak cerebral lateralization has common genetic origins with language and literacy impairments. Our understanding of the association between atypical language lateralization and developmental disorders may benefit if we reconceptualize the nature of cerebral asymmetry to recognize its multidimensionality and consider variation in lateralization over developmental time. Contrary to popular belief, cerebral lateralization may not be a highly heritable, stable characteristic of individuals; rather, weak lateralization may be a consequence of impaired language learning.

Concepts: Cerebral cortex, Roger Wolcott Sperry, Michael Gazzaniga, Cerebrum, Lateralization of brain function, Human brain

2

Impaired insight into illness (IMP-INS) is common among individuals with schizophrenia spectrum disorders (SSD), contributing to medication nonadherence and poor clinical outcomes. Caloric vestibular simulation (CVS) is typically used to assess peripheral vestibular system function. Left cold CVS is also a transiently effective treatment for IMP-INS and hemineglect secondary to right brain hemisphere stroke, and possibly for IMP-INS and mood stabilization in patients with SSD. Participants with SSD and moderate-to-severe IMP-INS participated in an exploratory double blind, crossover, randomized controlled study of the effects of CVS on IMP-INS. Participants sequentially received all experimental conditions-left cold (4°C), right cold, and body temperature/sham CVS-in a random order. Repeated measures ANOVA were performed to compare changes in IMP-INS, mood and positive symptom severity pre and 30min post CVS. A significant interaction was found between CVS condition, time, and body temperature nystagmus peak slow phase velocity (PSPV) for IMP-INS, indicating that single session left cold CVS transiently improved IMP-INS while right cold CVS may have worsened IMP-INS, particularly in participants with greater vestibular reactivity (i.e. higher PSPV) to body temperature CVS. The procedure’s effectiveness is attributed to stimulation of underactive right hemisphere circuits via vestibular nuclei projections to the contralateral hemisphere.

Concepts: Schizophrenia, Roger Wolcott Sperry, Effectiveness, Michael Gazzaniga, Temperature, Analysis of variance, Political spectrum, Cerebral hemisphere