Discover the most talked about and latest scientific content & concepts.

Concept: Island


In just over half a century plastic products have revolutionized human society and have infiltrated terrestrial and marine environments in every corner of the globe. The hazard plastic debris poses to biodiversity is well established, but mitigation and planning are often hampered by a lack of quantitative data on accumulation patterns. Here we document the amount of debris and rate of accumulation on Henderson Island, a remote, uninhabited island in the South Pacific. The density of debris was the highest reported anywhere in the world, up to 671.6 items/m(2) (mean ± SD: 239.4 ± 347.3 items/m(2)) on the surface of the beaches. Approximately 68% of debris (up to 4,496.9 pieces/m(2)) on the beach was buried <10 cm in the sediment. An estimated 37.7 million debris items weighing a total of 17.6 tons are currently present on Henderson, with up to 26.8 new items/m accumulating daily. Rarely visited by humans, Henderson Island and other remote islands may be sinks for some of the world's increasing volume of waste.

Concepts: Earth, World, Pacific Ocean, Beach, Island, Archipelago, Artificial island, Desert island


Sea-level rise and climatic change threaten the existence of atoll nations. Inundation and erosion are expected to render islands uninhabitable over the next century, forcing human migration. Here we present analysis of shoreline change in all 101 islands in the Pacific atoll nation of Tuvalu. Using remotely sensed data, change is analysed over the past four decades, a period when local sea level has risen at twice the global average (~3.90 ± 0.4 mm.yr-1). Results highlight a net increase in land area in Tuvalu of 73.5 ha (2.9%), despite sea-level rise, and land area increase in eight of nine atolls. Island change has lacked uniformity with 74% increasing and 27% decreasing in size. Results challenge perceptions of island loss, showing islands are dynamic features that will persist as sites for habitation over the next century, presenting alternate opportunities for adaptation that embrace the heterogeneity of island types and their dynamics.

Concepts: Oceanography, Climate change, Pacific Ocean, Maldives, Island, Atoll, Islands, Tuvalu


The viability of many species has been jeopardized by numerous negative factors over the centuries, but climate change is predicted to accelerate and increase the pressure of many of these threats, leading to extinctions. The Hawaiian honeycreepers, famous for their spectacular adaptive radiation, are predicted to experience negative responses to climate change, given their susceptibility to introduced disease, the strong linkage of disease distribution to climatic conditions, and their current distribution. We document the rapid collapse of the native avifauna on the island of Kaua'i that corresponds to changes in climate and disease prevalence. Although multiple factors may be pressuring the community, we suggest that a tipping point has been crossed in which temperatures in forest habitats at high elevations have reached a threshold that facilitates the development of avian malaria and its vector throughout these species' ranges. Continued incursion of invasive weeds and non-native avian competitors may be facilitated by climate change and could also contribute to declines. If current rates of decline continue, we predict multiple extinctions in the coming decades. Kaua'i represents an early warning for the forest bird communities on the Maui and Hawai'i islands, as well as other species around the world that are trapped within a climatic space that is rapidly disappearing.

Concepts: Hawaii, Climate, Climate change, Atmospheric pressure, Invasive species, Hawaiian Islands, Island, Hawaiian language


The increase in mobile phone use across the globe is creating mounting interest for its application in addressing health system constraints. Although still limited, there is growing evidence of success in using mobile phones for health (mHealth) in low- and middle- income countries. The promise of mHealth to address key health system issues presents a huge potential for the Pacific Island countries where mobile use has radically increased. Current projections indicate an improved information and communications technology (ICT) environment to support greater access to mobile and digital devices in the Pacific region.

Concepts: New Zealand, Pacific Ocean, Mobile phone, Rotary dial, Push-button telephone, Island, Pacific Islands, Pacific Islands Forum


Biofouled debris from the 2011 Great East Japan earthquake and tsunami has landed in the Northeast Pacific and along the Hawaiian Islands since 2012. As of 2017, >630 biofouled debris items with >320 living species of algae, invertebrates, and fish have been examined. The invasive mussel Mytilus galloprovincialis was present on >50% of those items. Size, reproduction, and growth of this filter-feeding species were examined to better understand long-distance rafting of a coastal species. The majority of mussels (79%) had developing or mature gametes, and growth rates averaged 0.075±0.018 SE mm/day. Structural and elemental (barium/calcium) analysis of mussel shells generated estimates of growth in coastal waters (mean=1.3 to 25mm total length), which provides an indication of residence times in waters along North America and the Hawaiian Islands prior to landing. Detailed studies of individual species contribute to our understanding of debris as a transport vector and aid efforts to evaluate potential risks associated with marine debris.

Concepts: Hawaii, United States, Japan, Pacific Ocean, Mussel, Mytilidae, Island, Zebra mussel


The reefs surrounding the Gilbert Islands (Republic of Kiribati, Central Pacific), like many throughout the world, have undergone a period of rapid and intensive environmental perturbation over the past 100 years. A byproduct of this perturbation has been a reduction of the number of shark species present in their waters, even though sharks play an important in the economy and culture of the Gilbertese. Here we examine how shark communities changed over time periods that predate the written record in order to understand the magnitude of ecosystem changes in the Central Pacific. Using a novel data source, the shark tooth weapons of the Gilbertese Islanders housed in natural history museums, we show that two species of shark, the Spot-tail (Carcharhinus sorrah) and the Dusky (C. obscurus), were present in the islands during the last half of the 19(th) century but not reported in any historical literature or contemporary ichthyological surveys of the region. Given the importance of these species to the ecology of the Gilbert Island reefs and to the culture of the Gilbertese people, documenting these shifts in baseline fauna represents an important step toward restoring the vivid splendor of both ecological and cultural diversity.

Concepts: Ecology, Pacific Ocean, Micronesia, Island, Kiribati, Gilbert Islands, Phoenix Islands, Gilbert and Ellice Islands


Birds have long fascinated scientists and travellers, so their distribution and abundance through time have been better documented than those of other organisms. Many bird species are known to have gone extinct, but information on subspecies extinctions has never been synthesised comprehensively. We reviewed the timing, spatial patterns, trends and causes of avian extinctions on a global scale, identifying 279 ultrataxa (141 monotypic species and 138 subspecies of polytypic species) that have gone extinct since 1500. Species extinctions peaked in the early 20(th) century, then fell until the mid 20(th) century, and have subsequently accelerated. However, extinctions of ultrataxa peaked in the second half of the 20(th) century. This trend reflects a consistent decline in the rate of extinctions on islands since the beginning of the 20(th) century, but an acceleration in the extinction rate on continents. Most losses (78.7% of species and 63.0% of subspecies) occurred on oceanic islands. Geographic foci of extinctions include the Hawaiian Islands (36 taxa), mainland Australia and islands (29 taxa), the Mascarene Islands (27 taxa), New Zealand (22 taxa) and French Polynesia (19 taxa). The major proximate drivers of extinction for both species and subspecies are invasive alien species (58.2% and 50.7% of species and subspecies, respectively), hunting (52.4% and 18.8%) and agriculture, including non-timber crops and livestock farming (14.9% and 31.9%). In general, the distribution and drivers of subspecific extinctions are similar to those for species extinctions. However, our finding that, when subspecies are considered, the extinction rate has accelerated in recent decades is both novel and alarming.

Concepts: Conservation biology, Evolution, Plant, Extinction, Subspecies, Invasive species, Island


Deep-sea scleractinian coral reefs are protected ecologically and biologically significant areas that support global fisheries. The absence of observations of deep-sea scleractinian reefs in the Central and Northeast Pacific, combined with the shallow aragonite saturation horizon (ASH) and high carbonate dissolution rates there, fueled the hypothesis that reef formation in the North Pacific was improbable. Despite this, we report the discovery of live scleractinian reefs on six seamounts of the Northwestern Hawaiian Islands and Emperor Seamount Chain at depths of 535-732 m and aragonite saturation state (Ωarag) values of 0.71-1.33. Although the ASH becomes deeper moving northwest along the chains, the depth distribution of the reefs becomes shallower, suggesting the ASH is having little influence on their distribution. Higher chlorophyll moving to the northwest may partially explain the geographic distribution of the reefs. Principle Components Analysis suggests that currents are also an important factor in their distribution, but neither chlorophyll nor the available current data can explain the unexpected depth distribution. Further environmental data is needed to elucidate the reason for the distribution of these reefs. The discovery of reef-forming scleractinians in this region is of concern because a number of the sites occur on seamounts with active trawl fisheries.

Concepts: Hawaii, United States, Coral reef, Scleractinia, Pacific Ocean, Hawaiian Islands, Island, Seamount


Incirrate octopods (those without fins) are among the larger megafauna inhabiting the benthic environments of all oceans, commonly in water depths down to about 3,000 m. They are known to protect and brood their eggs until the juveniles hatch, but to date there is little published information on octopod deep-sea life cycles and distribution. For this study, three manganese-crust and nodule-abundant regions of the deep Pacific were examined by remote operated-vehicle and towed camera surveys carried out between 2011 and 2016. Here, we report that the depth range of incirrate octopods can now be extended to at least 4,290 m. Octopods (twenty-nine individuals from two distinct species) were observed on the deep Ka'ena and Necker Ridges of the Hawaiian Archipelago, and in a nodule-abundant region of the Peru Basin. Two octopods were observed to be brooding clutches of eggs that were laid on stalks of dead sponges attached to nodules at depths exceeding 4,000 m. This is the first time such a specific mineral-biota association has been observed for incirrate octopods. Both broods consisted of approximately 30 large (2.0-2.7 cm) eggs. Given the low annual water temperature of 1.5(o)C, it is likely that egg development, and hence brooding, takes years [1]. Stalked-sponge fauna in the Peru Basin require the presence of manganese nodules as a substrate, and near total collapse of such sponge populations was observed following the experimental removal of nodules within the DISCOL (DISturbance and COLonisation) area of the Peru Basin [2]. Stalked fauna are also abundant on the hard substrates of the Hawaiian archipelago. The brooding behavior of the octopods we observed suggests that, like the sponges, they may also be susceptible to habitat loss following the removal of nodule fields and crusts by commercial exploitation.

Concepts: Hawaii, Atlantic Ocean, Japan, Pacific Ocean, Ocean, Hawaiian Islands, Island, James Cook


This research aims to define for the first time levels and patterns of different litter groups (macro, meso and microplastics) in sediments from a marine area designed for the institution of a new marine protected area (Aeolian Archipelago, Italy). Microplastics resulted the principal group and found in all samples analyzed, with shape and colours variable between different sampling sites. MPs levels measured in this study are similar to values recorded in harbour sites and lower than reported in Adriatic Sea, while macroplastics levels are notably lower than in harbor sites. Sediment grain-size and island extent resulted not significant in determining levels and distribution of plastic debris among islands. In the future, following the establishment of the MPA in the study area, these basic data will be useful to check for potential protective effects on the levels and distribution of plastic debris.

Concepts: Sediment, Mediterranean Sea, Italy, Sicily, Tyrrhenian Sea, Island, Etruscan civilization, Aeolian Islands