Discover the most talked about and latest scientific content & concepts.

Concept: Invasive animal species


We conducted a laboratory study to determine the impact of ground-applied termiticides on the above-ground foraging behavior of Coptotermes formosanus. Two concentrations (1 and 10 ppm) each of three termiticides, viz. fipronil, imidacloprid and chlorantraniliprole, were tested. After one month post-treatment (fipronil 10 ppm was run for 12 days only and all other treatments were run for one month), fipronil had the lowest percentage of survival (3%-4%) at both concentrations. Termite survival ranged from 31% to 40% in the case of imidacloprid treatments and 10 ppm chlorantraniliprole. However, 1 ppm chlorantraniliprole did not cause significant mortality compared to the controls. Foraging on the bottom substrate was evident in all replicates for all chemicals initially. However, a portion of the foraging population avoided the ground treatment toxicants after several days of bottom foraging. Only the slower-acting non-repellents created this repellent barrier, causing avoidance behavior that was most likely due to dead termites and fungus buildup on the treated bottom substrate. Fipronil appeared more toxic and faster acting at the concentrations tested, thus limiting this repellent effect. Suggestions by the pest control industry in Louisiana that some non-repellents can create a repellent barrier stranding live termites above ground are supported by this laboratory study.

Concepts: Cellulose, Cockroach, Imidacloprid, Termite, Termites, Invasive animal species, Formosan subterranean termite, Fipronil


Outdoor cats represent a global threat to terrestrial vertebrate conservation, but management has been rife with conflict due to differences in views of the problem and appropriate responses to it. To evaluate these differences we conducted a survey of opinions about outdoor cats and their management with two contrasting stakeholder groups, cat colony caretakers (CCCs) and bird conservation professionals (BCPs) across the United States. Group opinions were polarized, for both normative statements (CCCs supported treating feral cats as protected wildlife and using trap neuter and release [TNR] and BCPs supported treating feral cats as pests and using euthanasia) and empirical statements. Opinions also were related to gender, age, and education, with females and older respondents being less likely than their counterparts to support treating feral cats as pests, and females being less likely than males to support euthanasia. Most CCCs held false beliefs about the impacts of feral cats on wildlife and the impacts of TNR (e.g., 9% believed feral cats harmed bird populations, 70% believed TNR eliminates cat colonies, and 18% disagreed with the statement that feral cats filled the role of native predators). Only 6% of CCCs believed feral cats carried diseases. To the extent the beliefs held by CCCs are rooted in lack of knowledge and mistrust, rather than denial of directly observable phenomenon, the conservation community can manage these conflicts more productively by bringing CCCs into the process of defining data collection methods, defining study/management locations, and identifying common goals related to caring for animals.

Concepts: Gender, Bird, Seabird, Cat, Cats, Feral cat, Trap-Neuter-Return, Invasive animal species


Fermat’s principle of least time states that light rays passing through different media follow the fastest (and not the most direct) path between two points, leading to refraction at medium borders. Humans intuitively employ this rule, e.g., when a lifeguard has to infer the fastest way to traverse both beach and water to reach a swimmer in need. Here, we tested whether foraging ants also follow Fermat’s principle when forced to travel on two surfaces that differentially affected the ants' walking speed. Workers of the little fire ant, Wasmannia auropunctata, established “refracted” pheromone trails to a food source. These trails deviated from the most direct path, but were not different to paths predicted by Fermat’s principle. Our results demonstrate a new aspect of decentralized optimization and underline the versatility of the simple yet robust rules governing the self-organization of group-living animals.

Concepts: Optics, Light, Snell's law, Ant, Geometrical optics, Fermat's principle, Invasive animal species, Electric ant


Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for synthetic materials, so can gecko adhesion systems provide a baseline for scaling efficiency. In the tokay gecko (Gekko gecko), a scaling power law has been reported relating the maximum shear stress σmax to the area A: σmax ∝ A(-¼). We present a mechanical concept which improves upon the gecko’s non-uniform load-sharing and results in a nearly even load distribution over multiple patches of gecko-inspired adhesive. We created a synthetic adhesion system incorporating this concept which shows efficient scaling across four orders of magnitude of area, yielding an improved scaling power law: σmax ∝ A(-1/50). Furthermore, we found that the synthetic adhesion system does not fail catastrophically when a simulated failure is induced on a portion of the adhesive. In a practical demonstration, the synthetic adhesion system enabled a 70 kg human to climb vertical glass with 140 cm(2) of adhesive per hand.

Concepts: Gecko, Shear stress, Scale, Adhesion, Adhesive, Gekkonidae, Invasive animal species, Tokay gecko


Concerns over cat homelessness, over-taxed animal shelters, public health risks, and environmental impacts has raised attention on urban-cat populations. To truly understand cat population dynamics, the collective population of owned cats, unowned cats, and cats in the shelter system must be considered simultaneously because each subpopulation contributes differently to the overall population of cats in a community (e.g., differences in neuter rates, differences in impacts on wildlife) and cats move among categories through human interventions (e.g., adoption, abandonment). To assess this complex socio-ecological system, we developed a multistate matrix model of cats in urban areas that include owned cats, unowned cats (free-roaming and feral), and cats that move through the shelter system. Our model requires three inputs-location, number of human dwellings, and urban area-to provide testable predictions of cat abundance for any city in North America. Model-predicted population size of unowned cats in seven Canadian cities were not significantly different than published estimates (p = 0.23). Model-predicted proportions of sterile feral cats did not match observed sterile cat proportions for six USA cities (p = 0.001). Using a case study from Guelph, Ontario, Canada, we compared model-predicted to empirical estimates of cat abundance in each subpopulation and used perturbation analysis to calculate relative sensitivity of vital rates to cat abundance to demonstrate how management or mismanagement in one portion of the population could have repercussions across all portions of the network. Our study provides a general framework to consider cat population abundance in urban areas and, with refinement that includes city-specific parameter estimates and modeling, could provide a better understanding of population dynamics of cats in our communities.

Concepts: Scientific method, Population ecology, City, Cat, Domestication, Neutering, Cats, Invasive animal species


Given the social and territorial features described in feral cats, it is commonly assumed that life in multi-cat households is stressful for domestic cats and suggested that cats kept as single pets are likely to have better welfare. On the other hand, it has been hypothesized that under high densities cats can organize themselves socially thus preventing stress when spatial dispersion is unavailable. This study was aimed at comparing the general arousal underpinning emotional distress in single housed cats and in cats from multi-cat households (2 and 3-4 cats) on the basis of fecal glucocorticoid metabolites (GCM) measured via enzyme immunoassay (EIA). GCM did not significantly vary as a function of living style (single, double or group-housing); highly stressed individuals were equally likely in the three groups. Young cats in multi-cat households had lower GCM, and overall cats that tolerate (as opposed to dislike) petting by the owners tended to have higher GCM levels. Other environmental aspects within cat houses (e.g. relationship with humans, resources availability) may play a more important role in day to day feline arousal levels than the number of cats per se.

Concepts: Mammal, New Zealand, Cat, Felidae, Domestication, Felis, Cats, Invasive animal species


Bt crops are one of the most commonly used genetically modified crops worldwide. Bt crops contain a gene that is derived from the bacteria Bacillus thuringiensis, which produces the Cry1Ab toxin. Bt corn that contains the Cry1Ab toxin is used throughout the Midwest United States to control crop pests such as the European corn borer (Ostrinia nubilalis). Headwater streams in regions known for intensive agriculture receive Bt corn detritus after the fall harvest, which is then consumed by a diverse community of stream invertebrates. The rusty crayfish (Orconectes rusticus) is a common invertebrate detritivore in these headwater streams. Both isogenic and Bt corn were grown under the controlled environmental conditions of a greenhouse and, after senescence, were tested for nutritional equality. Rusty crayfish were exposed to one of several detrital treatments composed of Bt corn, Bt corn plus American sycamore (Platanus occidentalis), isogenic corn alone, isogenic corn plus P. occidentalis, or P. occidentalis alone for 8 weeks. Both strains of corn were grown under the controlled environmental conditions in a greenhouse and were tested for nutritional equality after senescence. Crayfish were housed in live streams with a water temperature of 12.8 °C and a 12:12 h light-to-dark photoperiod. Survival and growth of animals within each experimental treatment were monitored each week. After 8 weeks of exposure, there was no statistically significant difference in growth between crayfish in Bt and isogenic treatments. However, survivorship was 31 % lower in the Bt treatment compared with the isogenic treatment. These results suggest that the Bt corn and isogenic corn were of equivalent nutritional value but that Bt corn does have a toxic effect on rusty crayfish during long-term exposure.

Concepts: Agriculture, Bacillus thuringiensis, Genetically modified food, Invasive animal species, Ostrinia, European Corn Borer, Transgenic maize, Platanus occidentalis


The domestic cat (Felis catus) is an invasive exotic in many locations around the world and is thought to be a key factor driving recent mammal declines across northern Australia. Many mammal species native to this region now persist only in areas with high topographic complexity, provided by features such as gorges or escarpments. Do mammals persist in these habitats because cats occupy them less, or despite high cat occupancy? We show that occupancy of feral cats was lower in mammal-rich habitats of high topographic complexity. These results support the idea that predation pressure by feral cats is a factor contributing to the collapse of mammal communities across northern Australia. Managing impacts of feral cats is a global conservation challenge. Conservation actions such as choosing sites for small mammal reintroductions may be more successful if variation in cat occupancy with landscape features is taken into account.

Concepts: Mammal, New Zealand, Cat, Felidae, Theria, Felis, Cats, Invasive animal species


Objective-To predict effectiveness of 3 interventional methods of population control for feral cat colonies. Design-Population model. Sample-Estimates of vital data for feral cats. Procedures-Data were gathered from the literature regarding the demography and mating behavior of feral cats. An individual-based stochastic simulation model was developed to evaluate the effectiveness of trap-neuter-release (TNR), lethal control, and trap-vasectomy-hysterectomy-release (TVHR) in decreasing the size of feral cat populations. Results-TVHR outperformed both TNR and lethal control at all annual capture probabilities between 10% and 90%. Unless > 57% of cats were captured and neutered annually by TNR or removed by lethal control, there was minimal effect on population size. In contrast, with an annual capture rate of ≥ 35%, TVHR caused population size to decrease. An annual capture rate of 57% eliminated the modeled population in 4,000 days by use of TVHR, whereas > 82% was required for both TNR and lethal control. When the effect of fraction of adult cats neutered on kitten and young juvenile survival rate was included in the analysis, TNR performed progressively worse and could be counterproductive, such that population size increased, compared with no intervention at all. Conclusions and Clinical Relevance-TVHR should be preferred over TNR for management of feral cats if decrease in population size is the goal. This model allowed for many factors related to the trapping program and cats to be varied and should be useful for determining the financial and person-effort commitments required to have a desired effect on a given feral cat population.

Concepts: Clinical trial, Demography, Population, Population ecology, Cat, Cats, Feral cat, Invasive animal species


Marine debris from the Great Tsunami of 2011 represents a unique transport vector for Japanese species to reach Pacific North America and Hawaii. Here we characterize the invasion risk of invertebrate species associated with tsunami debris using a screening-level risk assessment tool - the Canadian Marine Invasive Screening Tool (CMIST). Higher-risk invertebrate invaders were identified for each of five different ecoregions. Some of these are well-known global invaders, such as the mussel Mytilus galloprovincialis and the ascidian Didemnum vexillum which already have invasion histories in some of the assessed ecoregions, while others like the sea star Asterias amurensis and the shore crab Hemigrapsus sanguineus have yet to invade large portions of the assessed ecoregions but also are recognized global invaders. In general, the probability of invasion was lower for the Gulf of Alaska and Hawaii, in part due to lower climate matches and the availability of other invasion vectors.

Concepts: Hawaii, United States, Alaska, Pacific Ocean, Gulf War, Canada, North America, Invasive animal species