Discover the most talked about and latest scientific content & concepts.

Concept: Insects


Based on molecular dating, the origin of insect agriculture is hypothesized to have taken place independently in three clades of fungus-farming insects: the termites, ants or ambrosia beetles during the Paleogene (66-24 Ma). Yet, definitive fossil evidence of fungus-growing behavior has been elusive, with no unequivocal records prior to the late Miocene (7-10 Ma). Here we report fossil evidence of insect agriculture in the form of fossil fungus gardens, preserved within 25 Ma termite nests from southwestern Tanzania. Using these well-dated fossil fungus gardens, we have recalibrated molecular divergence estimates for the origins of termite agriculture to around 31 Ma, lending support to hypotheses suggesting an African Paleogene origin for termite-fungus symbiosis; perhaps coinciding with rift initiation and changes in the African landscape.

Concepts: Evolution, Insect, Plant, Cretaceous, Ant, Insects, Pheromone, Termite


Many insects with long-proboscid mouthparts are among the pollinators of seed plants. Several cases of the long-proboscid pollination mode are known between fossil insects (e.g., true flies, scorpionflies, and lacewings) and various extinct gymnosperm lineages, beginning in the Early Permian and increasing during the Middle Jurassic to Early Cretaceous. However, details on the morphology of lacewing proboscides and the relevant pollination habit are largely lacking. Here we report on three lacewing species that belong to two new genera and a described genus from mid-Cretaceous (Albian-Cenomanian) amber of Myanmar. All these species possess relatively long proboscides, which are considered to be modified from maxillary and labial elements, probably functioning as a temporary siphon for feeding on nectar. Remarkably, these proboscides range from 0.4-1.0 mm in length and are attributed to the most diminutive ones among the contemporary long-proboscid insect pollinators. Further, they clearly differ from other long-proboscid lacewings which have a much longer siphon. The phylogenetic analysis indicates that these Burmese long-proboscid lacewings belong to the superfamily Psychopsoidea but cannot be placed into any known family. The present findings represent the first description of the mouthparts of long-proboscid lacewings preserved in amber and highlight the evolutionary diversification of the ancient plant-pollinator interactions.

Concepts: Evolution, Species, Insect, Plant, Seed, Cretaceous, Insects, Endopterygota


Chemical communication is fundamental to success in social insect colonies. Species-, colony-, and caste-specific blends of cuticular hydrocarbons (CHCs) and other chemicals have been well documented as pheromones, mediating important behavioral and physiological aspects of social insects. More specifically, royal pheromones used by queens (and kings in termites) enable workers to recognize and care for these vital individuals and maintain the reproductive division of labor. In termites, however, no royal-recognition pheromones have been identified to date. In the current study, solvent extracts of the subterranean termiteReticulitermes flavipeswere analyzed to assess differences in cuticular compounds among castes. We identified a royal-specific hydrocarbon-heneicosane-and several previously unreported and highly royal enriched long-chain alkanes. When applied to glass dummies, heneicosane elicited worker behavioral responses identical to those elicited by live termite queens, including increased vibratory shaking and antennation. Further, the behavioral effects of heneicosane were amplified when presented with nestmate termite workers' cuticular extracts, underscoring the importance of chemical context in termite royal recognition. Thus, heneicosane is a royal-recognition pheromone that is active in both queens and kings ofR. flavipesThe use of heneicosane as a queen and king recognition pheromone by termites suggests that CHCs evolved as royal pheromones ∼150 million years ago, ∼50 million years before their first use as queen-recognition pheromones in social Hymenoptera. We therefore infer that termites and social Hymenoptera convergently evolved the use of these ubiquitous compounds in royal recognition.

Concepts: Insect, Lepidoptera, Ant, Hymenoptera, Insects, Eusociality, Pheromone, Termite


Coleoptera (beetles) is a massively successful order of insects, distinguished by their evolutionarily modified forewings called elytra. These structures are often presumed to have been a major driving force for the successful radiation of this taxon, by providing beetles with protection against a variety of harsh environmental factors. However, few studies have directly demonstrated the functional significance of the elytra against diverse environmental challenges. Here, we sought to empirically test the function of the elytra using Tribolium castaneum (the red flour beetle) as a model. We tested four categories of stress on the beetles: physical damage to hindwings, predation, desiccation, and cold shock. We found that, in all categories, the presence of elytra conferred a significant advantage compared to those beetles with their elytra experimentally removed. This work provides compelling quantitative evidence supporting the importance of beetle forewings in tolerating a variety of environmental stresses, and gives insight into how the evolution of elytra have facilitated the remarkable success of beetle radiation.

Concepts: Insect, Fungus, Beetle, Ground beetle, Insects, Tenebrionidae, Elytron, Endopterygota


Since the early discovery of the antireflection properties of insect compound eyes, new examples of natural antireflective coatings have been rare. Here, we report the fabrication and optical characterization of a biologically inspired antireflective surface that emulates the intricate surface architectures of leafhopper-produced brochosomes-soccer ball-like microscale granules with nanoscale indentations. Our method utilizes double-layer colloidal crystal templates in conjunction with site-specific electrochemical growth to create these structures, and is compatible with various materials including metals, metal oxides, and conductive polymers. These brochosome coatings (BCs) can be designed to exhibit strong omnidirectional antireflective performance of wavelengths from 250 to 2000 nm, comparable to the state-of-the-art antireflective coatings. Our results provide evidence for the use of brochosomes as a camouflage coating against predators of leafhoppers or their eggs. The discovery of the antireflective function of BCs may find applications in solar energy harvesting, imaging, and sensing devices.

Concepts: Metal, Materials science, Hemiptera, Corrosion, Insects, Leafhopper, Brochosome, Anti-reflective coating


Mantodeans or praying mantises are flying insects and well known for their raptorial behaviour, mainly performed by their first pair of thoracic appendages. We describe here a new, exceptionally preserved specimen of the early mantodean Santanmantis axelrodi Grimaldi, 2003 from the famous 110 million years old Crato Formation, Brazil. The incomplete specimen preserves important morphological details, which were not known in this specific form before for this species or any other representative of Mantodea. Unlike in modern representatives or other fossil forms of Mantodea not only the first pair of thoracic appendages shows adaptations for predation. The femora of the second pair of thoracic appendages bear numerous strong, erect spines which appear to have a sharp tip, with this strongly resembling the spines of the first pair of thoracic appendages. This indicates that individuals of S. axelrodi likely used at least two pairs of thoracic appendages to catch prey. This demonstrates that the prey-catching behaviour was more diverse in early forms of praying mantises than anticipated.

Concepts: Insect, Predation, Cockroach, Insects, Insect wing, Mantis, Blattoptera


Leafhoppers (Insecta, Hemiptera, Cicadellidae) actively coat their integuments with buckyball-shaped submicron proteinaceous secretory particles, called brochosomes. Here, we demonstrate that brochosomal coats, recently shown to be superhydrophobic, act as non-stick coatings and protect leafhoppers from contamination with their own sticky exudates-filtered plant sap. We exposed 137 wings of Alnetoidia alneti (Dahlbom), from half of which brochosomes were removed, to the rain of exudates under a colony of live A. alneti. One hundred and fifty-two droplets became stuck to the bared wings and only three to the intact wings. Inspection of the wings with a scanning electron microscope confirmed that the droplets that had hit the intact wings had rolled or bounced off the brochosomal coats. This is the first experimental study that tested a biological function of the brochosomal coats of leafhopper integuments. We argue that the production of brochosomes in leafhoppers and production of epidermal wax blooms in other sap-sucking hemipterans are alternative solutions, both serving to protect these insects from entrapment by their exudates.

Concepts: Scanning electron microscope, Hemiptera, Insects, Auchenorrhyncha, Treehopper, Leafhopper, Cicadellidae, Brochosome


Loss of the flight ability and wing reduction has been reported for many taxa of Coleoptera. If elytra are closed, their roots are clenched between the tergum and the pleuron, forces applied to the elytra can not be transmitted to the field of campaniform sensilla situated on the root. That is why it is plausible to assume that the field becomes redundant in non-flying beetles. We examined the relationships between the hind wing reduction and characters of this mechanosensory field in beetles of six families. We measured the size of the elytron, that of the hind wing and counted the number of sensilla in the sensory field. Mesopterous non-flying beetles retain one half to one third of sensilla present in macropterous species of the same body size. Further reduction of the sensory field in brachypterous species is obvious, but sensilla are still present in insects with strongly reduced wings, as long as their elytra are separable and mesothoracic axillaries are present. Complete loss of sensilla coincides with the existence of a permanent sutural lock. However, some beetles with permanently locked elytra and absence of axillaries still retain few campaniform sensilla. A very special case of an extreme wing modification in feather-wing beetles is considered. No sensilla were revealed either on the root of the elytron or on the basal segment of such fringed wings in flying ptiliid species.

Concepts: Insect, Fungus, Beetle, Field, Wing, Insects, Insect wing, Elytron


Baculovirus infection of a host insect involves several steps, beginning with initiation of virus infection in the midgut, followed by dissemination of infection from the midgut to other tissues in the insect, and finally culminating in “melting” or liquefaction of the host, which allows for horizontal spread of infection to other insects. While all of the viral gene products are involved in ultimately reaching this dramatic infection endpoint, this review focuses on two particular types of baculovirus-encoded proteins: degradative enzymes and protease inhibitors. Neither of these types of proteins is commonly found in other virus families, but they both play important roles in baculovirus infection. The types of degradative enzymes and protease inhibitors encoded by baculoviruses are discussed, as are the roles of these proteins in the infection process.

Concepts: Protein, Bacteria, Virus, Genome, RNA, Moth, Insects, Baculovirus


We report that in a leaf insect, Phyllium westwoodii Wood-Mason (Phasmatodea: Phylliidae), two differing apertures can be used for oviposition, the color of eggs being affected by which aperture is used. Eggs which are forcibly propelled from the internal space within the valvulae of the abdomen are brown, whereas white eggs emerge slowly from the opening between the eighth sternite and the valvulae, and are deposited close to the ventral surface of the female. This unusual oviposition system does not appear to have been previously reported in phasmatids or in other insects.

Concepts: Insect, Thorax, Phasmatodea, Insects, Phylliidae