SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Hydrogen chloride

28

Both nitrate and pentachlorophenol (PCP) are familiar pollutants in aqueous environment. This research is focused on the simultaneous removal of nitrate and PCP from simulated contaminated groundwater using a laboratory-scale denitrification reactor packed with corncob as both carbon source and biofilm support. The reactor could be started up readily, and the removal efficiencies of nitrate and PCP reached up to approximately 98 % and 40-45 % when their initial concentrations were 50 mg N/L and 5 mg/L, respectively, after 15-day continuous operation at 10 h of hydraulic retention time (HRT) and 25 °C. Approximately 91 % of PCP removal efficiency was achieved, with 2.47 mg/L of chloride ion release at 24 h of HRT. Eighty-two percent of chlorine in PCP removed was ionized. The productions of 3-chlorophenol and phenol and chloride ion release indicate that the reductive dechlorination reaction is a major degradation pathway of PCP under the experimental conditions.

Concepts: Concentration, Chemistry, Water pollution, Sodium chloride, Ion, Chlorine, Chloride, Hydrogen chloride

0

Tests of horizontally restrained rocket motors at the ATK facility in Promontory, Utah, USA result in the deposition of an estimated 1.5millionkg of entrained soil and combustion products (mainly aluminum oxide, gaseous hydrogen chloride and water) on the surrounding area. The deposition is referred to as test fire soil (TFS). Farmers observing TFS deposited on their crops expressed concerns regarding the impact of this material. To address these concerns, we exposed corn and alfalfa to TFS collected during a September 2009 test. The impact was evaluated by comparing the growth and tissue composition of controls relative to the treatments. Exposure to TFS, containing elevated levels of chloride (1000 times) and aluminum (2 times) relative to native soils, affected the germination, growth and tissue concentrations of various elements, depending on the type and level of exposure. Germination was inhibited by high concentrations of TFS in soil, but the impact was reduced if the TFS was pre-leached with water. Biomass production was reduced in the TFS amended soils and corn grown in TFS amended soils did not develop kernels. Chloride concentrations in corn and alfalfa grown in TFS amended soils were two orders of magnitude greater than controls. TFS exposed plants contained higher concentrations of several cations, although the concentrations were well below livestock feed recommendations. Foliar applications of TFS had no impact on biomass, but some differences in the elemental composition of leaves relative to controls were observed. Washing the TFS off the leaves lessened the impact. Results indicate that the TFS deposition could have an effect, depending on the amount and growth stage of the crops, but the impact could be mitigated with rainfall or the application of additional irrigation water. The high level of chloride associated with the TFS is the main cause of the observed impacts.

Concepts: Photosynthesis, Oxygen, Hydrogen, Nitrogen, Aluminium, Ion, Chlorine, Hydrogen chloride

0

The synthesis of the title compounds was carried out by reacting dicarboxylic acid chlorides with oximes in the presence of excess triethylamine. Disubstituted malonyl chlorides gave 2-alkenyl-4,4-dialkyl-3,5-isoxazolidinediones (8a-f) and 2,2'-ethylidene-bis[4,4-didialkyl-3,5-isoxazolidinedione]s (9a-f). Compounds 9 were formed from 8 and its N-unsubstituted 3,5-isoxazolidinedione decomposition product. Phthaloyl chlorides reacted with acetone oxime to yield 3-(1-methylethenyl)-1H-2,3-benzoxazine-1,4(3H)-diones (16a-e). Products 16 spontaneously decomposed to give N-unsubstituted 1H-2,3-benzoxazine-1,4(3H)-diones (17a-e) at rates that were dependent on temperature and solvent. Kinetic studies showed that two of the compounds decomposed by zero-order kinetics under neutral conditions. Butanedioyl chloride did not produce a cyclic product.

Concepts: Oxygen, Chemical reaction, Ethanol, Chlorine, Reagent, Kinetics, Hydrogen chloride, Dicarboxylic acid

0

The objectives of the current study were to evaluate the efficacy and field safety of GnRH HCl administered at 3 doses in fixed-time artificial insemination (FTAI) programs (Ovsynch) in dairy cows. A common protocol was conducted at 6 commercial dairies. Between 188 and 195 cows were enrolled at each site (total enrolled = 1,142). Cows had body condition scores ≥2 and ≤4, were between 32 to 140 d in milk, and were clinically healthy. Within pen and enrollment day (enrollment cohort), cows were assigned randomly in blocks of 4 to each of 4 treatments: (1) 25 mg of PGF2α on d 7 with FTAI 72 ± 2 h later (control); (2) 100 µg of GnRH on d 0, d 7 a dose of 25 mg of PGF2α, and the second administration of 100 µg of GnRH (T100) administered either at 48 ± 2 h (d 9) after PGF2α with FTAI 24 ± 2 h later or 56 ± 2 h (d 9) after PGF2α and FTAI 17 ± 2 h later; (3) same as T100 with both injections of 150 µg of GnRH (T150); and (4) same as T100 with both injections of 200 µg of GnRH (T200). Three sites selected the first option and 3 sites selected the second option for the timing of the second injection of all doses of GnRH. Cows were observed daily for signs of estrus and adverse clinical signs. Cows not returning to estrus had pregnancy diagnosis between 42 and 65 d following FTAI. Pregnancies per FTAI (P/FTAI) were analyzed as a binary variable (1 = pregnant, 0 = not pregnant) using a generalized linear mixed model with a binomial error distribution and a logit link function. The statistical model included fixed effects for treatment, random effects of site, site by treatment, enrollment cohort within site, and residual. Parity (first vs. second or greater) was included as a covariate. For demonstration of effectiveness, α = 0.05 and a 2-tailed test were used. Fifty-two cows were removed from the study because of either deviation from the protocol, injury, illness, culling, or death. Among the remaining 1,090 cows, 33.9% were primiparous and 66.1% were multiparous. Back-transformed least squares means for P/FTAI were 17.1, 27.3, 29.1, and 32.2% for control, T100, T150 and T200, respectively. The P/FTAI for each GnRH dose differed from that of the control. No differences were detected in P/FTAI between GnRH doses. No treatment-related adverse events were observed. Mastitis was the most frequently observed adverse clinical sign, followed by lameness and pneumonia. This study documents the efficacy and safety of doses of 100 to 200 µg of GnRH as the HCl salt when used in Ovsynch programs.

Concepts: Clinical trial, Milk, Cattle, Dairy farming, Dairy cattle, Dairy, Artificial insemination, Hydrogen chloride

0

The development of suitable scaffolds plays a significant role in tissue engineering research. Although scaffolds with promising features have been produced via a variety of innovative methods, there are no fully-synthetic tissue engineering scaffolds that possess all the desired properties in one three-dimensional construct. Herein, we report the development of novel polyester poly(ethylene glycol) (PEG) sponges that display many of the desirable scaffold characteristics. Our novel synthetic approach utilises acidchloride/alcohol chemistry, whereby the reaction between a hydroxyl end-functionalised 4-arm PEG and sebacoyl chloride resulted in cross-linking and simultaneous hydrogen chloride gas production which, was exploited for the in situ formation of highly interconnected pores. Variation of the fabrication conditions, including precursor volume and concentration, allowed the pore size and structure as well as the compressive properties to be tailored. The sponges were found to possess excellent elastic properties, preserving their shape even after 80% compressive strain without failure. The benign properties of the sponges were demonstrated in an in vivo subcutaneous rat model, which also revealed uniform infiltration of vascularised tissue by 8 weeks and complete degradation of the sponges by 16 weeks with only a minimal inflammatory response being observed over the course of the experiments.

Concepts: Extracellular matrix, Chemical reaction, Hydrogen, In vivo, Chlorine, In situ, Hydrogen chloride, Hydrochloric acid

0

A reversed-polarity synthetic method of a range of unsymmetric aryl aryl and alkenyl aryl ketones has been developed through Pd-catalyzed cross-coupling reaction of acylindium reagents generated in situ from easily available acid chlorides and indium with various electrophiles such as aryl iodide and triflate and alkenyl triflate.

Concepts: Alcohol, Amine, Alkene, Carbonyl, Functional groups, Carboxylic acid, Chloride, Hydrogen chloride

0

Organotin compounds (OTCs) are among the most toxic substances ever introduced to the environment by man. They are common pollutants in marine ecosystems, but are also present in the terrestrial environment, accumulated mainly in sewage sludge and landfill leachates. In investigations of the degradation and methylation processes of OTC in environmental samples, the use of enriched isotopic tracers represents a powerful analytical tool. Sn-enriched OTC are also necessary in application of the isotope dilution mass spectrometry technique for their accurate quantification. Since Sn-enriched monobutyltin (MBT), dibutyltin (DBT) and tributyltin (TBT) are not commercially available as single species, “in house” synthesis of individual butyltin-enriched species is necessary. In the present work, the preparation of the most toxic butyltin, namely TBT, was performed via a simple synthetic path, starting with bromination of metallic Sn, followed by butylation with butyl lithium. The tetrabutyltin (TeBT) formed was transformed to tributyltin chloride (TBTCl) using concentrated hydrochloric acid (HCl). The purity of the synthesized TBT was verified by speciation analysis using the techniques of gas chromatography coupled to inductively coupled plasma mass spectrometry (GC-ICP-MS) and nuclear magnetic resonance (NMR). The results showed that TBT had a purity of more than 97%. The remaining 3% corresponded to DBT. TBT was quantified by reverse isotope dilution GC-ICP-MS. The synthesis yield was around 60%. The advantage of this procedure over those previously reported lies in its possibility to be applied on a micro-scale (starting with 10mg of metallic Sn). This feature is of crucial importance, since enriched metallic Sn is extremely expensive. The procedure is simple and repeatable, and was successfully applied for the preparation of (117)Sn-enriched TBTCl from (117)Sn-enriched metal.

Concepts: Mass spectrometry, Hydrogen, Nuclear magnetic resonance, NMR spectroscopy, Chlorine, Isotope, Hydrogen chloride, Hydrochloric acid

0

The hydrogen bond has been studied by chemists for nearly a century. Interest in this ubiquitous bond has lead to several prototypical systems emerging to studying its behavior. Hydrogen chloride clusters stand as one such example. We present here a new many-body potential energy surface for (HCl)n constructed from one-, two- and three-body interactions. The surface is constructed from previous highly accurate, semi-empirical monomer and dimer surfaces and a new high-level, ab initio permutationally invariant full-dimensional three-body potential. The new three-body potential is based on fitting roughly 52,000 three-body energies computed using coupled cluster with single, doubles, perturbative triples and explicit correlation and the augmented correlation consistent double zeta basis set. The first application, described here, is to the ring HCl trimer, for which the many-body representation is exact. The new potential describes all known stationary points of the trimer as well its dissociation to either three monomers or a monomer and a dimer. The anharmonic vibrational energies are computed for the three H-Cl stretches, using explicit 3-mode coupling calculations and local-monomer calculations with Hückel-type coupling. Both methods produce frequencies within 5 cm-1 of experiment. A wavepacket calculation based on the Hückel-model and full-dimensional classical calculation are performed to study the monomer H-Cl stretch vibration-vibration transfer process in the ring HCl trimer. Somewhat surprisingly, the results of the quantum and classical calculations are virtually identical. Finally, this representation of the potential is used to study properties of larger clusters, namely to compute optimized geometries of the tetramer, pentamer and hexamer and to perform explicit 4-mode coupling calculations of the tetramer’s anharmonic stretch frequencies. The optimized geometries are found to be in agreement with those of previous ab initio studies and the tetramer’s anharmonic frequencies are computed to be within 11 cm-1 of experiment.

Concepts: Energy, Quantum mechanics, Hydrogen, Computational chemistry, Kinetic energy, Monomer, Hydrogen chloride, -mer

0

An iron(iii)-mediated photocatalytic method for the conversion of aryl, heteroaryl and polycyclic aromatic bromides to the corresponding chlorides with high selectivity has been achieved successfully. The mild reaction conditions and high chloride utilization efficiency promise a bright future for chlorination reactions.

Concepts: Water purification, Sodium chloride, Chlorine, Chloride, The Conversion, Hydrogen chloride, Bromine, Hydrochloric acid

0

Substance flow analysis (SFA) is applied to a case study of chlorine metabolism in a chlor-alkali industrial chain. A chain-level SFA model is constructed, and eight indices are proposed to analyze and evaluate the metabolic status of elemental chlorine. The primary objectives of this study are to identify low-efficiency links in production processes and to find ways to improve the operational performance of the industrial chain. Five-year in-depth data collection and analysis revealed that system production efficiency and source efficiency continued increasing since 2008, i.e., when the chain was first formed, at average annual growth rates of 21.01 % and 1.01 %, respectively. In 2011, 64.15 % of the total chlorine input was transformed into final products. That is, as high as 98.50 % of the chlorine inputs were utilized when other by-products were counted. Chlorine loss occurred mostly in the form of chloride ions in wastewater, and the system loss rate was 0.54 %. The metabolic efficiency of chlorine in this case was high, and the chain system had minimal impact on the environment. However, from the perspectives of processing depth and economic output, the case study of a chlor-alkali industrial chain still requires expansion.

Concepts: Economics, Sodium chloride, Chlorine, Chloride, Input, Hydrogen chloride, Output, Hydrochloric acid