Discover the most talked about and latest scientific content & concepts.

Concept: Hydrogen chloride


Both nitrate and pentachlorophenol (PCP) are familiar pollutants in aqueous environment. This research is focused on the simultaneous removal of nitrate and PCP from simulated contaminated groundwater using a laboratory-scale denitrification reactor packed with corncob as both carbon source and biofilm support. The reactor could be started up readily, and the removal efficiencies of nitrate and PCP reached up to approximately 98 % and 40-45 % when their initial concentrations were 50 mg N/L and 5 mg/L, respectively, after 15-day continuous operation at 10 h of hydraulic retention time (HRT) and 25 °C. Approximately 91 % of PCP removal efficiency was achieved, with 2.47 mg/L of chloride ion release at 24 h of HRT. Eighty-two percent of chlorine in PCP removed was ionized. The productions of 3-chlorophenol and phenol and chloride ion release indicate that the reductive dechlorination reaction is a major degradation pathway of PCP under the experimental conditions.

Concepts: Concentration, Chemistry, Water pollution, Sodium chloride, Ion, Chlorine, Chloride, Hydrogen chloride


In June 2015, personnel from California’s Contra Costa Health Services Environmental Health and Hazardous Materials (hazmat) divisions were alerted to a possible chemical release at a swimming pool in an outdoor municipal water park. Approximately 50 bathers were in the pool when symptoms began; 34 (68%) experienced vomiting, coughing, or eye irritation. Among these persons, 17 (50%) were treated at the scene by Contra Costa’s Emergency Medical Services (EMS) and released, and 17 (50%) were transported to local emergency departments; five patients also were evaluated later at an emergency department or by a primary medical provider. Environmental staff members determined that a chemical controller malfunction had allowed sodium hypochlorite and muriatic acid (hydrochloric acid) solutions to be injected into the main pool recirculation line while the recirculation pump was off; when the main recirculation pump was restarted, toxic chlorine gas (generated by the reaction of concentrated sodium hypochlorite and muriatic acid) was released into the pool. A review of 2008-2015 California pesticide exposure records identified eight additional such instances of toxic chlorine gas releases at public aquatic venues caused by equipment failure or human error that sickened 156 persons. Chemical exposures at public aquatic venues can be prevented by proper handling, storage, and monitoring of pool chemicals; appropriate equipment operation and maintenance; training of pool operators and staff members on pool chemical safety; and reporting of chemical exposures.

Concepts: Hydrogen, Sodium chloride, Chlorine, Hypochlorous acid, Hydrogen chloride, Hydrochloric acid, Swimming pool, Sodium carbonate


Ingestion of contaminated soil is one potential internal exposure pathway in areas contaminated by the Fukushima Daiichi Nuclear Power Plant accident. Doses from this pathway can be overestimated if the availability of radioactive nuclides in soils for the gastrointestinal tract is not considered. The concept of bioaccessibility has been adopted to evaluate this availability based on in vitro tests. This study evaluated the bioaccessibility of radioactive cesium from soils via the physiologically-based extraction test (PBET) and the extractability of those via an extraction test with 1 mol/L of hydrochloric acid (HCl). The bioaccessibility obtained in the PBET was 5.3% ± 1%, and the extractability in the tests with HCl was 16% ± 3%. The bioaccessibility was strongly correlated with the extractability. This result indicates the possibility that the extractability in HCl can be used as a good predictor of the bioaccessibility with PBET. In addition, we assessed the doses to children from the ingestion of soil via hand-to-mouth activity based on our PBET results using a probabilistic approach considering the spatial distribution of radioactive cesium in Date City in Fukushima Prefecture and the interindividual differences in the surveyed amounts of soil ingestion in Japan. The results of this assessment indicate that even if children were to routinely ingest a large amount of soil with relatively high contamination, the radiation doses from this pathway are negligible compared with doses from external exposure owing to deposited radionuclides in Fukushima Prefecture.

Concepts: Chernobyl disaster, Digestive system, Chlorine, Nuclear power, Hydrogen chloride, Hydrochloric acid, Fukushima Prefecture, Tōhoku region


Trichloroethylene (TCE) is a widespread environmental pollutant common in groundwater plumes associated with industrial manufacturing areas. We had previously isolated and characterized a natural bacterial endophyte, Enterobacter sp. strain PDN3, of poplar trees, that rapidly metabolizes TCE, releasing chloride ion. We now report findings from a successful three-year field trial of endophyte-assisted phytoremediation on the Middlefield-Ellis-Whisman Superfund Study Area TCE plume in the Silicon Valley of California. The inoculated poplar trees exhibited increased growth and reduced TCE phytotoxic effects with a 32% increase in trunk diameter compared to mock-inoculated control poplar trees. The inoculated trees excreted 50% more chloride ion into the rhizosphere, indicative of increased TCE metabolism in planta. Data from tree core analysis of the tree tissues provided further supporting evidence of the enhanced rate of degradation of the chlorinated solvents in the inoculated trees. Test well groundwater analyses demonstrated a marked decrease in concentration of TCE and its derivatives from the tree-associated groundwater plume. The concentration of TCE decreased from 300 µg/L upstream of the planted area to less than 5 µg/L downstream of the planted area. TCE derivatives were similarly removed with cis-1,2-dichloroethene decreasing from 160 µg/L to less than 5 µg/L and trans-1,2-dichloroethene decreasing from 3.1 µg/L to less than 0.5 µg/L downstream of the planted trees. 1,1-dichloroethene and vinyl chloride both decreased from 6.8 and 0.77 µg/L, respectively, to below the reporting limit of 0.5 µg/L providing strong evidence of the ability of the endophytic inoculated trees to effectively remove TCE from affected groundwater. The combination of native pollutant-degrading endophytic bacteria and fast-growing poplar tree systems offers a readily deployable, cost-effective approach for the degradation of TCE, and may help mitigate potential transfer up the food chain, volatilization to the atmosphere, as well as direct phytotoxic impacts to plants used in this type of phytoremediation.

Concepts: Plant, Ion, Chlorine, Trees, Hydrogen chloride, Endophyte, Hydrochloric acid, Love Canal


The synthesis of carboxylic acid derivatives from unsaturated hydrocarbons is an important process for the preparation of polymers, pharmaceuticals, cosmetics and agrochemicals. Despite its industrial relevance, the traditional Reppe-type carbonylation reaction using pressurized CO is of limited applicability to laboratory-scale synthesis because of: (1) the safety hazards associated with the use of CO, (2) the need for special equipment to handle pressurized gas, (3) the low reactivity of several relevant nucleophiles and (4) the necessity to employ different, often tailor-made, catalytic systems for each nucleophile. Herein we demonstrate that a shuttle-catalysis approach enables a CO- and HCl-free transfer process between an inexpensive reagent, butyryl chloride, and a wide range of unsaturated substrates to access the corresponding acid chlorides in good yields. This new transformation provides access to a broad range of carbonyl-containing products through the in situ transformation of the reactive acid chloride intermediate. In a broader context, this work demonstrates that isodesmic shuttle-catalysis reactions can unlock elusive catalytic reactions.

Concepts: Alcohol, Amine, Chemical reaction, Functional group, Hydrogen, Catalysis, Carboxylic acid, Hydrogen chloride


The pressure-temperature phase diagram of ice displays a perplexing variety of structurally distinct phases. In the century-long history of scientific research on ice, the proton-ordered ice phases numbered XIII through XV were discovered only recently. Despite considerable effort, none of the transitions leading from the low-temperature ordered ices VIII, IX, XI, XIII, XIV and XV to their high-temperature disordered counterparts were experimentally found to display the full Pauling entropy. Here we report calorimetric measurements on suitably high-pressure-treated, hydrogen chloride-doped ice XIV that demonstrate just this at the transition to ice XII. Dielectric spectroscopy on undoped and on variously doped ice XII crystals reveals that addition of hydrogen chloride, the agent triggering complete proton order in ice XIV, enhances the precursor dynamics strongest. These discoveries provide new insights into the puzzling observation that different dopants trigger the formation of different proton-ordered ice phases.

Concepts: Crystal, Hydrogen, Ice, Phase, Chlorine, Triple point, Hydrogen chloride, Hydrochloric acid


This study presents an efficient strategy based on pH-zone-refining counter-current chromatography with a hydrophilic organic/salt-containing two-phase system composed of acetonitrile, sodium chloride and water for preparative separation of polar alkaloids from natural products. Acetonitrile-sodium chloride-water system provides a wider range of polarity for polar alkaloids than classical aqueous two-phase systems. It gets rid of the effect of free hydrogen ion, strong ionic strength, hold low viscosity and the sharp retainer border could be formed easily. So acetonitrile-sodium chloride-water system showed great advantages to pH-zone-refining counter-current chromatography for polar alkaloids. The separation of polar indole alkaloids from toad venom was selected as an example to show the advantage and practicability of this strategy. An optimized acetonitrile-sodium chloride-water (54%:5%:41%, w%) system was applied in this study, where 10 mM triethylamine (TEA) as the retainer and 15 mM hydrochloric acid (HCl) as the eluter were added. As a result, three polar indole alkaloids, including 19 mg of serotonin, 45 mg of 5-Hydroxy-N'-methyl tryptamine, 33 mg of bufotenine were simultaneously separated from 500 mg of 5% ethanol elution fraction of toad venom on macroporous resin chromatography, with the purity of 91.3%, 97.5% and 89.4%, respectively. Their structures were identified by spectroscopic analysis.

Concepts: Hydrogen, Sodium chloride, Analytical chemistry, Ion, Chlorine, Chloride, Hydrogen chloride, Hydrochloric acid


In this work, the potentialities of the amino-functionalized, chromium-based MIL-101 metal organic framework (NH2-MIL-101) as a high capacity, fully regenerable hydrogen chloride adsorbent have been proved by a thorough adsorption thermodynamics investigation. The chosen adsorbent showed high gaseous HCl adsorption capacities and, to the best of our knowledge, it is the first example of a totally regenerable substrate for this kind of adsorbate, as evidenced by both experimental and modeling results. This paves the way to the implementation of greener, more energetically efficient pressure / temperature swing adsorption processes to purify biogas feeds for high temperature fuel cells.

Concepts: Hydrogen, Catalysis, Thermodynamics, Heat, Adsorption, Chlorine, Hydrogen chloride, Hydrochloric acid


BIII 5-arylsubporphyrins and BIII subporphine are promising precursors for functional BIII subporphyrins bearing asymmetric meso-substituents. Herein we report the first synthesis of these molecules. Among many aryl acid chlorides examined, 4-nitrobenzoyl chloride gave BIII 5-(4-nitrophenyl)subporphyrin in 10% yield in condensation with triethylamine-tri-N-tripyrromethene-borane. The nitro group of this BIII subporphyrin was reduced with NaBH4 to prepare BIII 5-(aminophenyl)subporphyrin, which was converted into BIII 5-phenylsubporphyrin via the corresponding dia-zonium salt. BIII subporphine was synthesized by condensation of triethyl orthoformate with triethylamine-tri-N-tripyrromethene-borane. Progressive removal of meso-phenyl substituents leads to continu-ous changes in the optical properties, while the BIII subporphine deviates from this trend in some properties.

Concepts: Amino acid, Amine, Functional group, Chemical synthesis, Carbonyl, Chloride, Nitro compound, Hydrogen chloride


Changes in the protein profile of acquired enamel pellicles (AEP) formed in vivo over different time periods were evaluated after the application of hydrochloric acid (HCl).

Concepts: Protein, Hydrogen, Acid dissociation constant, PH, Chlorine, Hydrogen chloride, Hydrochloric acid, Leblanc process