Discover the most talked about and latest scientific content & concepts.

Concept: Helicopter


Unmanned Aerial Systems (UAS or drones) could potentially be used for the routine transport of small goods such as diagnostic clinical laboratory specimens. To the best of our knowledge, there is no published study of the impact of UAS transportation on laboratory tests.

Concepts: Medicine, Chemistry, Experiment, Greatest hits albums, Laboratory, Helicopter


Unmanned aerial vehicles (UAVs) represent a new frontier in environmental research. Their use has the potential to revolutionise the field if they prove capable of improving data quality or the ease with which data are collected beyond traditional methods. We apply UAV technology to wildlife monitoring in tropical and polar environments and demonstrate that UAV-derived counts of colony nesting birds are an order of magnitude more precise than traditional ground counts. The increased count precision afforded by UAVs, along with their ability to survey hard-to-reach populations and places, will likely drive many wildlife monitoring projects that rely on population counts to transition from traditional methods to UAV technology. Careful consideration will be required to ensure the coherence of historic data sets with new UAV-derived data and we propose a method for determining the number of duplicated (concurrent UAV and ground counts) sampling points needed to achieve data compatibility.

Concepts: Accuracy and precision, Unmanned aerial vehicle, Helicopter, MQ-1 Predator


Regulations have allowed for increased unmanned aircraft systems (UAS) operations over the last decade, yet operations over people are still not permitted. The objective of this study was to estimate the range of injury risks to humans due to UAS impact. Three commercially-available UAS models that varied in mass (1.2-11 kg) were evaluated to estimate the range of risk associated with UAS-human interaction. Live flight and falling impact tests were conducted using an instrumented Hybrid III test dummy. On average, live flight tests were observed to be less severe than falling impact tests. The maximum risk of AIS 3+ injury associated with live flight tests was 11.6%, while several falling impact tests estimated risks exceeding 50%. Risk of injury was observed to increase with increasing UAS mass, and the larger models tested are not safe for operations over people in their current form. However, there is likely a subset of smaller UAS models that are safe to operate over people. Further, designs which redirect the UAS away from the head or deform upon impact transfer less energy and generate lower risk. These data represent a necessary impact testing foundation for future UAS regulations on operations over people.

Concepts: Mathematics, Risk, Fixed-wing aircraft, Unmanned aerial vehicle, Helicopter, Unmanned vehicles, Unmanned Aircraft System


Unmanned aerial vehicles (UAVs) have the potential to revolutionize the way research is conducted in many scientific fields [1, 2]. UAVs can access remote or difficult terrain [3], collect large amounts of data for lower cost than traditional aerial methods, and facilitate observations of species that are wary of human presence [4]. Currently, despite large regulatory hurdles [5], UAVs are being deployed by researchers and conservationists to monitor threats to biodiversity [6], collect frequent aerial imagery [7-9], estimate population abundance [4, 10], and deter poaching [11]. Studies have examined the behavioral responses of wildlife to aircraft [12-20] (including UAVs [21]), but with the widespread increase in UAV flights, it is critical to understand whether UAVs act as stressors to wildlife and to quantify that impact. Biologger technology allows for the remote monitoring of stress responses in free-roaming individuals [22], and when linked to locational information, it can be used to determine events [19, 23, 24] or components of an animal’s environment [25] that elicit a physiological response not apparent based on behavior alone. We assessed effects of UAV flights on movements and heart rate responses of free-roaming American black bears. We observed consistently strong physiological responses but infrequent behavioral changes. All bears, including an individual denned for hibernation, responded to UAV flights with elevated heart rates, rising as much as 123 beats per minute above the pre-flight baseline. It is important to consider the additional stress on wildlife from UAV flights when developing regulations and best scientific practices.

Concepts: Physiology, Heart rate, American Black Bear, Fixed-wing aircraft, Unmanned aerial vehicle, Helicopter, Unmanned vehicles


Estimating animal populations is critical for wildlife management. Aerial surveys are used for generating population estimates, but can be hampered by cost, logistical complexity, and human risk. Additionally, human counts of organisms in aerial imagery can be tedious and subjective. Automated approaches show promise, but can be constrained by long setup times and difficulty discriminating animals in aggregations. We combine unmanned aircraft systems (UAS), thermal imagery and computer vision to improve traditional wildlife survey methods. During spring 2015, we flew fixed-wing UAS equipped with thermal sensors, imaging two grey seal (Halichoerus grypus) breeding colonies in eastern Canada. Human analysts counted and classified individual seals in imagery manually. Concurrently, an automated classification and detection algorithm discriminated seals based upon temperature, size, and shape of thermal signatures. Automated counts were within 95-98% of human estimates; at Saddle Island, the model estimated 894 seals compared to analyst counts of 913, and at Hay Island estimated 2188 seals compared to analysts' 2311. The algorithm improves upon shortcomings of computer vision by effectively recognizing seals in aggregations while keeping model setup time minimal. Our study illustrates how UAS, thermal imagery, and automated detection can be combined to efficiently collect population data critical to wildlife management.

Concepts: Population, Pinniped, Gray Seal, Massachusetts, Fixed-wing aircraft, Unmanned aerial vehicle, Helicopter, Unmanned Aircraft System


The use of small Unmanned Aircraft Systems (UAS; also known as “drones”) for professional and personal-leisure use is increasing enormously. UAS operate at low altitudes (<500 m) and in any terrain, thus they are susceptible to interact with local fauna, generating a new type of anthropogenic disturbance that has not been systematically evaluated. To address this gap, we performed a review of the existent literature about animals' responses to UAS flights and conducted a pooled analysis of the data to determine the probability and intensity of the disturbance, and to identify the factors influencing animals' reactions towards the small aircraft. We found that wildlife reactions depended on both the UAS attributes (flight pattern, engine type and size of aircraft) and the characteristics of animals themselves (type of animal, life-history stage and level of aggregation). Target-oriented flight patterns, larger UAS sizes, and fuel-powered (noisier) engines evoked the strongest reactions in wildlife. Animals during the non-breeding period and in large groups were more likely to show behavioral reactions to UAS, and birds are more prone to react than other taxa. We discuss the implications of these results in the context of wildlife disturbance and suggest guidelines for conservationists, users and manufacturers to minimize the impact of UAS. In addition, we propose that the legal framework needs to be adapted so that appropriate actions can be undertaken when wildlife is negatively affected by these emergent practices.

Concepts: Animal, Flight, Fixed-wing aircraft, Internal combustion engine, Aircraft, Unmanned aerial vehicle, Helicopter, Unmanned Aircraft System


Remote-controlled aerial drones (or unmanned aerial vehicles; UAVs) are employed for surveillance by the military and police, which suggests that drone-captured footage might provide sufficient information for person identification. This study demonstrates that person identification from drone-captured images is poor when targets are unfamiliar (Experiment 1), when targets are familiar and the number of possible identities is restricted by context (Experiment 2), and when moving footage is employed (Experiment 3). Person information such as sex, race and age is also difficult to access from drone-captured footage (Experiment 4). These findings suggest that such footage provides a particularly poor medium for person identification. This is likely to reflect the sub-optimal quality of such footage, which is subject to factors such as the height and velocity at which drones fly, viewing distance, unfavourable vantage points, and ambient conditions.

Concepts: Unmanned aerial vehicle, Ambient music, Helicopter, Robert Rich, Unmanned vehicles, Drone music, Trances


The physiological and biomechanical requirements of flight at high altitude have been the subject of much interest. Here, we uncover a steep relation between heart rate and wingbeat frequency (raised to the exponent 3.5) and estimated metabolic power and wingbeat frequency (exponent 7) of migratory bar-headed geese. Flight costs increase more rapidly than anticipated as air density declines, which overturns prevailing expectations that this species should maintain high-altitude flight when traversing the Himalayas. Instead, a “roller coaster” strategy, of tracking the underlying terrain and discarding large altitude gains only to recoup them later in the flight with occasional benefits from orographic lift, is shown to be energetically advantageous for flights over the Himalayas.

Concepts: Energy, Force, Wing, Anser, Geese, Helicopter, Bar-headed Goose, Glider aircraft


Unmanned Aerial Vehicles (UAVs) could potentially be used to transport microbiological specimens. To examine UAV impact on microbiological specimens, blood and sputum culture specimens were seeded with usual pathogens and flown in an UAV for 30±2 minutes. Time-to-recovery, colony counts, morphology and MALDI-TOF MS identification of the flown and stationary specimens were similar for all microbes studied.

Concepts: Bacteria, Microbiology, Fixed-wing aircraft, Unmanned aerial vehicle, Helicopter, MQ-1 Predator


Aerial surveys are a recognised technique to identify the presence and abundance of marine animals. However, the capability of aerial observers to reliably sight coastal sharks has not been previously assessed, nor have differences in sighting rates between aircraft types been examined. In this study we investigated the ability of observers in fixed-wing and helicopter aircraft to sight 2.5 m artificial shark analogues placed at known depths and positions. Initial tests revealed that the shark analogues could only be detected at shallow depths, averaging only 2.5 m and 2.7 m below the water surface for observers in fixed-wing and helicopter aircraft, respectively. We then deployed analogues at shallower depths along a 5 km-long grid, and assessed their sightability to aircraft observers through a series of transects flown within 500 m. Analogues were seen infrequently from all distances, with overall sighting rates of only 12.5% and 17.1% for fixed-wing and helicopter observers, respectively. Although helicopter observers had consistently higher success rates of sighting analogues within 250 m of their flight path, neither aircraft observers sighted more than 9% of analogues deployed over 300 m from their flight paths. Modelling of sighting rates against environmental and experimental variables indicated that observations were affected by distance, aircraft type, sun glare and sea conditions, while the range of water turbidities observed had no effect. We conclude that aerial observers have limited ability to detect the presence of submerged animals such as sharks, particularly when the sharks are deeper than ∼2.6 m, or over 300 m distant from the aircraft’s flight path, especially during sunny or windy days. The low rates of detections found in this study cast serious doubts on the use of aerial beach patrols as an effective early-warning system to prevent shark attacks.

Concepts: Observation, Flight, Rocket, Wing, Fixed-wing aircraft, Aircraft, Helicopter, Sharks