SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Guinea

308

Perhaps the only good news from the tragic Ebola epidemic in Guinea, Sierra Leone, and Liberia is that it may serve as a wake-up call: we must prepare for future epidemics of diseases that may spread more effectively than Ebola. There is a significant chance that an epidemic of a substantially more infectious disease will occur sometime in the next 20 years; after all, we saw major epidemics during the 20th century, including the Spanish influenza epidemic of 1918-1919 and the ongoing pandemic of human immunodeficiency virus. In fact, of all the things that could kill more than 10 million . . .

Concepts: Epidemiology, Infectious disease, Infection, Influenza, Pandemic, Liberia, Sierra Leone, Guinea

148

Six-year-old Fatou was exposed to Ebola at her uncle’s funeral in Forécariah, a district along Guinea’s border with Sierra Leone where about 50% of all Guinea’s Ebola cases since February 2015 have occurred.(1) Fatou’s entire family was registered as contacts to be monitored for the next 21 days, during which the disease could develop. A contact tracer began making daily visits to check their temperatures and evaluate them for symptoms. For the first few days, everything seemed fine, but on the fifth day, Fatou was found to have fever and vomiting. A response team was dispatched to bring her to . . .

Concepts: West Africa, Liberia, Sierra Leone, Freetown, Economic Community of West African States, Currency, Guinea, Susu people

147

In its largest outbreak, Ebola virus disease is spreading through Guinea, Liberia, Sierra Leone, and Nigeria. We sequenced 99 Ebola virus genomes from 78 patients in Sierra Leone to ~2000× coverage. We observed a rapid accumulation of interhost and intrahost genetic variation, allowing us to characterize patterns of viral transmission over the initial weeks of the epidemic. This West African variant likely diverged from central African lineages around 2004, crossed from Guinea to Sierra Leone in May 2014, and has exhibited sustained human-to-human transmission subsequently, with no evidence of additional zoonotic sources. Because many of the mutations alter protein sequences and other biologically meaningful targets, they should be monitored for impact on diagnostics, vaccines, and therapies critical to outbreak response.

Concepts: DNA, Genetics, Nigeria, West Africa, Liberia, Sierra Leone, Economic Community of West African States, Guinea

116

Response to the 2014-2015 Ebola outbreak in West Africa overwhelmed the healthcare systems of Guinea, Liberia, and Sierra Leone, reducing access to health services for diagnosis and treatment for the major diseases that are endemic to the region: malaria, HIV/AIDS, and tuberculosis. To estimate the repercussions of the Ebola outbreak on the populations at risk for these diseases, we developed computational models for disease transmission and infection progression. We estimated that a 50% reduction in access to healthcare services during the Ebola outbreak exacerbated malaria, HIV/AIDS, and tuberculosis mortality rates by additional death counts of 6,269 (2,564-12,407) in Guinea; 1,535 (522-2,8780) in Liberia; and 2,819 (844-4,844) in Sierra Leone. The 2014-2015 Ebola outbreak was catastrophic in these countries, and its indirect impact of increasing the mortality rates of other diseases was also substantial.

Concepts: Medicine, Epidemiology, Infectious disease, Nigeria, West Africa, Liberia, Sierra Leone, Guinea

95

Future infectious disease epidemics are likely to disproportionately affect countries with weak health systems, exacerbating global vulnerability. To decrease the severity of epidemics in these settings, lessons can be drawn from the Ebola outbreak in West Africa. There is a dearth of literature on public perceptions of the public health response system that required citizens to report and treat Ebola cases. Epidemiological reports suggested that there were delays in diagnosis and treatment. The purpose of our study was to explore the barriers preventing Sierra Leoneans from trusting and using the Ebola response system during the height of the outbreak.

Concepts: Epidemiology, Infectious disease, West Africa, Ghana, Liberia, Atlantic slave trade, Sierra Leone, Guinea

93

Although recent research revealed an impact of westernization on diversity and composition of the human gut microbiota, the exact consequences on metacommunity characteristics are insufficiently understood, and the underlying ecological mechanisms have not been elucidated. Here, we have compared the fecal microbiota of adults from two non-industrialized regions in Papua New Guinea (PNG) with that of United States (US) residents. Papua New Guineans harbor communities with greater bacterial diversity, lower inter-individual variation, vastly different abundance profiles, and bacterial lineages undetectable in US residents. A quantification of the ecological processes that govern community assembly identified bacterial dispersal as the dominant process that shapes the microbiome in PNG but not in the US. These findings suggest that the microbiome alterations detected in industrialized societies might arise from modern lifestyle factors limiting bacterial dispersal, which has implications for human health and the development of strategies aimed to redress the impact of westernization.

Concepts: Gut flora, Southeast Asia, Ecology, Indonesia, Pacific Ocean, Papua New Guinea, New Guinea, Guinea

68

Background On March 23, 2014, the World Health Organization (WHO) was notified of an outbreak of Ebola virus disease (EVD) in Guinea. On August 8, the WHO declared the epidemic to be a “public health emergency of international concern.” Methods By September 14, 2014, a total of 4507 probable and confirmed cases, including 2296 deaths from EVD (Zaire species) had been reported from five countries in West Africa - Guinea, Liberia, Nigeria, Senegal, and Sierra Leone. We analyzed a detailed subset of data on 3343 confirmed and 667 probable Ebola cases collected in Guinea, Liberia, Nigeria, and Sierra Leone as of September 14. Results The majority of patients are 15 to 44 years of age (49.9% male), and we estimate that the case fatality rate is 70.8% (95% confidence interval [CI], 69 to 73) among persons with known clinical outcome of infection. The course of infection, including signs and symptoms, incubation period (11.4 days), and serial interval (15.3 days), is similar to that reported in previous outbreaks of EVD. On the basis of the initial periods of exponential growth, the estimated basic reproduction numbers (R0 ) are 1.71 (95% CI, 1.44 to 2.01) for Guinea, 1.83 (95% CI, 1.72 to 1.94) for Liberia, and 2.02 (95% CI, 1.79 to 2.26) for Sierra Leone. The estimated current reproduction numbers ® are 1.81 (95% CI, 1.60 to 2.03) for Guinea, 1.51 (95% CI, 1.41 to 1.60) for Liberia, and 1.38 (95% CI, 1.27 to 1.51) for Sierra Leone; the corresponding doubling times are 15.7 days (95% CI, 12.9 to 20.3) for Guinea, 23.6 days (95% CI, 20.2 to 28.2) for Liberia, and 30.2 days (95% CI, 23.6 to 42.3) for Sierra Leone. Assuming no change in the control measures for this epidemic, by November 2, 2014, the cumulative reported numbers of confirmed and probable cases are predicted to be 5740 in Guinea, 9890 in Liberia, and 5000 in Sierra Leone, exceeding 20,000 in total. Conclusions These data indicate that without drastic improvements in control measures, the numbers of cases of and deaths from EVD are expected to continue increasing from hundreds to thousands per week in the coming months.

Concepts: Nigeria, West Africa, Ebola, Incubation period, Liberia, Sierra Leone, Economic Community of West African States, Guinea

43

Near the end of 2013, an outbreak of Zaire ebolavirus (EBOV) began in Guinea, subsequently spreading to neighboring Liberia and Sierra Leone. As this epidemic grew, important public health questions emerged about how and why this outbreak was so different from previous episodes. This review provides a synthetic synopsis of the 2014-15 outbreak, with the aim of understanding its unprecedented spread. We present a summary of the history of previous epidemics, describe the structure and genetics of the ebolavirus, and review our current understanding of viral vectors and the latest treatment practices. We conclude with an analysis of the public health challenges epidemic responders faced and some of the lessons that could be applied to future outbreaks of Ebola or other viruses.

Concepts: Epidemiology, Nigeria, West Africa, Liberia, Sierra Leone, Economic Community of West African States, Guinea

40

Following the 2013-2016 outbreak of Ebola virus disease (EVD) in West Africa, governments across the region imposed a ban on the hunting and consumption of meat from wild animals. This injunction was accompanied by public health messages emphasising the infectious potential of wild meat, or ‘bushmeat.’ Using qualitative methods, we examine the local reception and impact of these interventions. Fieldwork was focused in 9 villages in the Eastern and Southern provinces of Sierra Leone between August and December 2015. We conducted 47 semi-structured interviews, coordinated 12 informal group discussions, and conducted direct observations throughout. We also draw from research undertaken in Sierra Leone immediately before the outbreak, and from our participation in the EVD response in Guinea and Sierra Leone. Our findings underscore the social and political reverberations of hunting proscriptions. Messaging that unilaterally stressed the health risk posed by wild meat contradicted the experiences of target publics, who consume wild meat without incident. This epistemic dissonance radically undercut the effectiveness of the ban, which merely served to proliferate informal networks of wild animal trade and sale-rendering the development of acceptable, evidence-based surveillance and mitigation strategies for zoonotic spillovers almost impossible. Further, the criminalisation of wild meat consumption fuelled fears and rumours within communities under considerable strain from the health, social, and economic effects of the epidemic, entrenching distrust towards outbreak responders and exacerbating pre-existing tensions within villages. These unintended consequences are instructive for public health emergency response and preparedness. While wild meat is a risk for zoonotic infection, mitigating those risks entails interventions that fully take into account the local significances of hunting-including a communicative engagement that is designed, validated, and continually refined before emergency situations. Ultimately, our research questions the value of legal sanctions as a means of behavioural change in an emergency context.

Concepts: Epidemiology, Infectious disease, West Africa, Viral hemorrhagic fever, Wildlife, Liberia, Sierra Leone, Guinea

35

An Ebola outbreak started in December 2013 in Guinea and spread to Liberia and Sierra Leone in 2014. The health systems in place in the three countries lacked the infrastructure and the preparation to respond to the outbreak quickly and the World Health Organisation (WHO) declared a public health emergency of international concern on August 8 2014.

Concepts: Africa, Nigeria, West Africa, Liberia, Sierra Leone, Economic Community of West African States, Guinea, Mandinka people