SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Ground beetle

144

Coleoptera (beetles) is a massively successful order of insects, distinguished by their evolutionarily modified forewings called elytra. These structures are often presumed to have been a major driving force for the successful radiation of this taxon, by providing beetles with protection against a variety of harsh environmental factors. However, few studies have directly demonstrated the functional significance of the elytra against diverse environmental challenges. Here, we sought to empirically test the function of the elytra using Tribolium castaneum (the red flour beetle) as a model. We tested four categories of stress on the beetles: physical damage to hindwings, predation, desiccation, and cold shock. We found that, in all categories, the presence of elytra conferred a significant advantage compared to those beetles with their elytra experimentally removed. This work provides compelling quantitative evidence supporting the importance of beetle forewings in tolerating a variety of environmental stresses, and gives insight into how the evolution of elytra have facilitated the remarkable success of beetle radiation.

Concepts: Insect, Fungus, Beetle, Ground beetle, Insects, Tenebrionidae, Elytron, Endopterygota

138

The carabid beetle species Pterostichus oblongopunctatus is common in different types of forests in Poland and Europe. With respect to this species, some unclarities exist concerning the morphological feature of punctures on the elytra. P. oblongopunctatus has dorsal pits in the third interval of the elytra, the available identification keys, however, provide inconsistent information concerning the puncture in other intervals. During long-term studies at different study sites in Poland, the first author rarely but regularly discovered individuals with unusual dorsal puncture patterns, i.e., pits in the fifth and even in the seventh interval of the elytra. Since such rare patterns might be connected with special habitat characteristics, and thus have a potential as an indicator, the aim of the study was to test if they are connected with specific subpopulations (interaction groups), if they are related to the sex or size of the beetles, and if they are related to specific habitat conditions.

Concepts: Beetle, Adephaga, Ground beetle, Oak, Elytron, Bombardier beetle, Harpalinae, Carabidae

59

Some prey animals can escape from the digestive systems of predators after being swallowed. To clarify the ecological factors that determine the success of such an escape, we investigated how the bombardier beetle Pheropsophus jessoensis escapes from two toad species, Bufo japonicus and Btorrenticola, under laboratory conditions. Pheropsophus jessoensis ejects a hot chemical spray from the tip of the abdomen when it is attacked. Although all toads swallowed the bombardier beetles, 43% of the toads vomited the beetles 12-107 min after swallowing them. All the vomited beetles were still alive and active. Our experiment showed that Pjessoensis ejected hot chemicals inside the toads, thereby forcing the toads to vomit. Large beetles escaped more frequently than small beetles, and small toads vomited the beetles more frequently than large toads. Our results demonstrate the importance of the prey-predator size relationship in the successful escape of prey from inside a predator.

Concepts: Predation, Ecology, Chemistry, Beetle, Ground beetle, Frog, Escape, Bombardier beetle

43

Bombardier beetles (Brachinini) use a rapid series of discrete explosions inside their pygidial gland reaction chambers to produce a hot, pulsed, quinone-based defensive spray. The mechanism of brachinines' spray pulsation was explored using anatomical studies and direct observation of explosions inside living beetles using synchrotron x-ray imaging. Quantification of the dynamics of vapor inside the reaction chamber indicates that spray pulsation is controlled by specialized, contiguous cuticular structures located at the junction between the reservoir (reactant) and reaction chambers. Kinematics models suggest passive mediation of spray pulsation by mechanical feedback from the explosion, causing displacement of these structures.

Concepts: Beetle, Metaphysics, Ground beetle, Determinism, Bombardier beetle

24

Pitfall trapping is a sampling technique frequently used by entomologists around the world. However, there exist sampling biases linked to particular trapping designs, which require investigation. In this study, we compared the effects of the type of preservative fluid (propylene glycol or formaldehyde) and the presence of fish bait in pitfall traps on the number of specimens (individuals) collected, the species richness, and the species composition of carabid (Coleoptera: Carabidae) and silphid (Coleoptera: Silphidae) beetle assemblages. Traps containing propylene glycol collected a substantially higher number of individuals of both taxa and a higher number of silphid species compared with traps containing formaldehyde. The use of fish bait in the traps increased the number of individuals collected and the number of species collected for silphid beetles but had no effect on the collection parameters for carabids. The species composition of the carabid assemblages was minimally affected by the presence of fish bait or the type of preservative fluid, whereas the fish bait had a substantial effect on the species composition of silphids. The silphid species that feed directly on vertebrate carcasses were almost completely absent in the nonbaited traps. The results suggest that pitfall traps baited with fish and containing propylene glycol as a preservative fluid are optimal for the simultaneous sampling of carabid and silphid beetles, which both provide important ecosystem services (e.g., predation of pests and decomposition of vertebrate carcasses) and are therefore interesting for ecological research.

Concepts: Beetle, Propylene glycol, Adephaga, Beetles, Ground beetle, Decomposition, Bombardier beetle, Silphidae

18

Insects exhibit a variety of morphological specializations specific to particular behaviors, and these permit the reconstruction of palaeobiological traits. Despite the critical importance of predator-prey strategies in insect evolution, the appearance of particular aspects of predation are often difficult to determine from the fossil record of hexapods. Here we report the discovery of highly specialized, mid-Cretaceous ant-like stone beetles (Staphylinidae: Scydmaeninae) displaying morphological modifications unknown among living scydmaenids and associated with predation on springtails (Collembola), a widespread and abundant group of significantly greater geological age. Cascomastigus monstrabilis gen. et sp. nov. exhibits an extremely large body size, elongate clubbed maxillary palpi, toothed mandibles, and more importantly, slender and highly modified antennae that functioned as an antennal setal trap. Such an antennal modification is analogous to that of the modern ground beetle genus Loricera (Carabidae: Loricerinae), a group possessing a specialized antennal setal trap exclusively for the capture of springtails. The presence of an identical antennal setal trap in C. monstrabilis demonstrates a unique and dramatic form of obligate predation among the late Mesozoic insects.

Concepts: Evolution, Insect, Beetle, Ground beetle, Hexapoda, Dung beetle, Springtail, Diplura

11

Fossil elytra of a small trechine carabid are reported from the Oliver Bluffs on the Beardmore Glacier at lat. 85°S. They were compared with counterparts from the extant genera Trechisibus, Tasmanorites, Oxytrechus and Pseudocnides. The fossils share some characters but are sufficiently different to be described as a new genus and species. We named the new species Antarctotrechus balli in honour of George E. Ball who made major contributions to the study of carabids through his own research and the training of students while at the University of Alberta, Edmonton, Alberta, Canada. The closest extant relatives to the extinct Antarctotrechus balli are species of Trechisibus, which inhabit South America, the Falkland Islands and South Georgia, and Tasmanorites, which inhabit Tasmania, Australia. Plant fossils associated with Antarctotrechus balli included Nothofagus (southern beech), Ranunculus (buttercup), moss mats and cushion plants that were part of a tundra biome. Collectively, the stratigraphic relationships and the growth characteristics of the fossil plants indicate that Antarctotrechus balli inhabited the sparsely-vegetated banks of a stream that was part of an outwash plain at the head of a fjord in the Transantarctic Mountains. Other insects represented by fossils in the tundra biome include a listroderine weevil and a cyclorrhaphan fly. The age of the fossils, based on comparison of associated pollen with (40)Ar/(39)Ar dated pollen assemblages from the McMurdo Dry Valleys, is probably Early to Mid-Miocene in the range 14-20 Ma. The tundra biome, including Antarctotrechus balli, became extinct in the interior of Antarctica about 14 Ma and on the margins of the continent by 10-13 Ma. Antarctotrechus balli confirms that trechines were once widely distributed in Gondwana. For Antarctotrechus balli and other elements of the tundra biome it appears they continued to inhabit a warmer Antarctica for many millions of years after rifting of Tasmania (45 Ma) and southern South America (31 Ma).

Concepts: Plant, Beetle, South America, Antarctica, Ground beetle, Victoria Land, Transantarctic Mountains, Beardmore Glacier

4

High visual acuity allows parallel processing of distant environmental features, but only when photons are abundant enough. Diurnal tiger beetles (Carabidae: Cicindelinae) have acute vision for insects and visually pursue prey in open, flat habitats. Their fast running speed causes motion blur that degrades visual contrast, forces stop-and-go pursuit and potentially impairs obstacle detection. We demonstrate here that vision is insufficient for obstacle detection during running, and show instead that antennal touch is both necessary and sufficient for obstacle detection. While running, tiger beetle vision appears to be photon-limited in a way reminiscent of animals in low-light habitats. Such animals often acquire wide-field spatial information through mechanosensation mediated by longer, more mobile appendages. We show that a nocturnal tiger beetle species waves its antennae in elliptical patterns typical of poorly sighted insects. While antennae of diurnal species are also used for mechanosensation, they are rigidly held forward with the tips close to the substrate. This enables timely detection of path obstructions followed by an increase in body pitch to avoid collision. Our results demonstrate adaptive mechanosensory augmentation of blurred visual information during fast locomotion, and suggest that future studies may reveal non-visual sensory compensation in other fast-moving animals.

Concepts: Visual acuity, Beetle, Running, Necessary and sufficient condition, Locomotion, Adephaga, Ground beetle, Tiger beetle

3

Some animals have evolved the use of environmental materials as “portable armour” against natural enemies. Portable bags that bagworm larvae (Lepidoptera: Psychidae) construct using their own silk and plant parts are generally believed to play an important role as a physical barrier against natural enemies. However, no experimental studies have tested the importance of bags as portable armour against predators. To clarify the defensive function, I studied the bagworm Eumeta minuscula and a potential predator Calosoma maximoviczi (Coleoptera: Carabidae). Under laboratory conditions, all bagworm larvae were attacked by carabid adults, but successfully defended themselves against the predators' mandibles using their own bags. The portable bags, which are composed mainly of host plant twigs, may function as a physical barrier against predator mandibles. To test this hypothesis, I removed the twig bags and replaced some with herb leaf bags; all bag-removed larvae were easily caught and predated by carabids, while all bag-replaced larvae could successfully defend themselves against carabid attacks. Therefore, various types of portable bags can protect bagworm larvae from carabid attacks. This is the first study to test the defensive function of bagworm portable bags against invertebrate predators.

Concepts: Insect, Predation, Beetle, Biological pest control, Ground beetle

2

In this paper we explore high-throughput Illumina sequencing of nuclear protein-coding, ribosomal, and mitochondrial genes in small, dried insects stored in natural history collections. We sequenced one tenebrionid beetle and 12 carabid beetles ranging in size from 3.7 to 9.7 mm in length that have been stored in various museums for 4 to 84 years. Although we chose a number of old, small specimens for which we expected low sequence recovery, we successfully recovered at least some low-copy nuclear protein-coding genes from all specimens. For example, in one 56-year-old beetle, 4.4 mm in length, our de novo assembly recovered about 63% of approximately 41,900 nucleotides in a target suite of 67 nuclear protein-coding gene fragments, and 70% using a reference-based assembly. Even in the least successfully sequenced carabid specimen, reference-based assembly yielded fragments that were at least 50% of the target length for 34 of 67 nuclear protein-coding gene fragments. Exploration of alternative references for reference-based assembly revealed few signs of bias created by the reference. For all specimens we recovered almost complete copies of ribosomal and mitochondrial genes. We verified the general accuracy of the sequences through comparisons with sequences obtained from PCR and Sanger sequencing, including of conspecific, fresh specimens, and through phylogenetic analysis that tested the placement of sequences in predicted regions. A few possible inaccuracies in the sequences were detected, but these rarely affected the phylogenetic placement of the samples. Although our sample sizes are low, an exploratory regression study suggests that the dominant factor in predicting success at recovering nuclear protein-coding genes is a high number of Illumina reads, with success at PCR of COI and killing by immersion in ethanol being secondary factors; in analyses of only high-read samples, the primary significant explanatory variable was body length, with small beetles being more successfully sequenced.

Concepts: DNA, Gene, Molecular biology, Biology, RNA, Sequence, Beetle, Ground beetle