Discover the most talked about and latest scientific content & concepts.

Concept: Grassland


BACKGROUND: Biodiversity loss and species invasions are among the most important human-induced global changes. Moreover, these two processes are interlinked as ecosystem invasibility is considered to increase with decreasing biodiversity. In temperate grasslands, earthworms serve as important ecosystem engineers making up the majority of soil faunal biomass. Herbivore behaviour has been shown to be affected by earthworms, however it is unclear whether these effects differ with the composition of plant communities. To test this we conducted a mesocosm experiment where we added earthworms (Annelida: Lumbricidae) to planted grassland communities with different plant species composition (3 vs. 12 plant spp.). Plant communities had equal plant densities and ratios of the functional groups grasses, non-leguminous forbs and legumes. Later, Arion vulgaris slugs (formerly known as A. lusitanicus; Gastropoda: Arionidae) were added and allowed to freely choose among the available plant species. This slug species is listed among the 100 worst alien species in Europe. We hypothesized that (i) the food choice of slugs would be altered by earthworms' specific effects on the growth and nutrient content of plant species, (ii) slug herbivory will be less affected by earthworms in plant communities containing more plant species than in those with fewer plant species because of a more readily utilization of plant resources making the impacts of earthworms less pronounced. RESULTS: Slug herbivory was significantly affected by both earthworms and plant species composition. Slugs damaged 60% less leaves when earthworms were present, regardless of the species composition of the plant communities. Percent leaf area consumed by slugs was 40% lower in communities containing 12 plant species; in communities containing only three species earthworms increased slug leaf area consumption. Grasses were generally avoided by slugs. Leaf length and number of tillers was increased in mesocosms containing more plant species but little influenced by earthworms. Overall shoot biomass was decreased, root biomass increased in plant communities with more plant species. Earthworms decreased total shoot biomass in mesocosms with more plant species but did not affect biomass production of individual functional groups. Plant nitrogen concentrations across three focus species were 18% higher when earthworms were present; composition of plant communities did not affect plant quality. CONCLUSIONS: Given the important role that both herbivores and earthworms play in structuring plant communities the implications of belowground-aboveground linkages should more broadly be considered when investigating global change effects on ecosystems.

Concepts: Biodiversity, Plant, Animal, Affect, Grassland, Herbivore, Earthworm, Invasive species


For decades, ecologists have measured habitat attributes in the field to understand and predict patterns of animal distribution and abundance. However, the scale of inference possible from field measured data is typically limited because large-scale data collection is rarely feasible. This is problematic given that conservation and management typical require data that are fine grained yet broad in extent. Recent advances in remote sensing methodology offer alternative tools for efficiently characterizing wildlife habitat across broad areas. We explored the use of remotely sensed image texture, which is a surrogate for vegetation structure, calculated from both an air photo and from a Landsat TM satellite image, compared with field-measured vegetation structure, characterized by foliage-height diversity and horizontal vegetation structure, to predict avian density and species richness within grassland, savanna, and woodland habitats at Fort McCoy Military Installation, Wisconsin, USA. Image texture calculated from the air photo best predicted density of a grassland associated species, grasshopper sparrow (Ammodramus savannarum), within grassland habitat (R(2)  = 0.52, p-value <0.001), and avian species richness among habitats (R(2)  = 0.54, p-value <0.001). Density of field sparrow (Spizella pusilla), a savanna associated species, was not particularly well captured by either field-measured or remotely sensed vegetation structure variables, but was best predicted by air photo image texture (R(2)  = 0.13, p-value = 0.002). Density of ovenbird (Seiurus aurocapillus), a woodland associated species, was best predicted by pixel-level satellite data (mean NDVI, R(2)  = 0.54, p-value <0.001). Surprisingly and interestingly, remotely sensed vegetation structure measures (i.e., image texture) were often better predictors of avian density and species richness than field-measured vegetation structure, and thus show promise as a valuable tool for mapping habitat quality and characterizing biodiversity across broad areas.

Concepts: Habitat, Prediction, Habitats, Grassland, Remote sensing, American sparrow, Birds of the United States, Spizella


Increased nitrogen (N) deposition is common worldwide. Questions of where, how, and if reactive N-input influences soil carbon © sequestration in terrestrial ecosystems are of great concern. To explore the potential for soil C sequestration in steppe region under N and phosphorus (P) addition, we conducted a field experiment between 2006 and 2012 in the temperate grasslands of northern China. The experiment examined 6 levels of N (0-56 g N m(-2) yr(-1)), 6 levels of P (0-12.4 g P m(-2) yr(-1)), and a control scenario. Our results showed that addition of both N and P enhanced soil total C storage in grasslands due to significant increases of C input from litter and roots. Compared with control plots, soil organic carbon (SOC) in the 0-100 cm soil layer varied quadratically, from 156.8 to 1352.9 g C m(-2) with N addition gradient (R(2) = 0.99, P < 0.001); and logarithmically, from 293.6 to 788.6 g C m(-2) with P addition gradient (R(2) = 0.56, P = 0.087). Soil inorganic carbon (SIC) decreased quadratically with N addition. The net C sequestration on grassland (including plant, roots, SIC, and SOC) increased linearly from -128.6 to 729.0 g C m(-2) under N addition (R(2) = 0.72, P = 0.023); and increased logarithmically, from 248.5 to 698 g C m(-2)under P addition (R(2) = 0.82, P = 0.014). Our study implies that N addition has complex effects on soil carbon dynamics, and future studies of soil C sequestration on grasslands should include evaluations of both SOC and SIC under various scenarios.

Concepts: Carbon dioxide, Soil, Carbon, Geology, Grassland, Steppe, Savanna, Temperate grasslands, savannas, and shrublands


Tropical savannas have been increasingly viewed as an opportunity for carbon sequestration through fire suppression and afforestation, but insufficient attention has been given to the consequences for biodiversity. To evaluate the biodiversity costs of increasing carbon sequestration, we quantified changes in ecosystem carbon stocks and the associated changes in communities of plants and ants resulting from fire suppression in savannas of the Brazilian Cerrado, a global biodiversity hotspot. Fire suppression resulted in increased carbon stocks of 1.2 Mg ha(-1) year(-1) since 1986 but was associated with acute species loss. In sites fully encroached by forest, plant species richness declined by 27%, and ant richness declined by 35%. Richness of savanna specialists, the species most at risk of local extinction due to forest encroachment, declined by 67% for plants and 86% for ants. This loss highlights the important role of fire in maintaining biodiversity in tropical savannas, a role that is not reflected in current policies of fire suppression throughout the Brazilian Cerrado. In tropical grasslands and savannas throughout the tropics, carbon mitigation programs that promote forest cover cannot be assumed to provide net benefits for conservation.

Concepts: Biodiversity, Evolution, Plant, Grassland, Extinction, Biome, Savanna, Tropical and subtropical grasslands, savannas, and shrublands


Fire is an essential Earth system process that alters ecosystem and atmospheric composition. Here we assessed long-term fire trends using multiple satellite data sets. We found that global burned area declined by 24.3 ± 8.8% over the past 18 years. The estimated decrease in burned area remained robust after adjusting for precipitation variability and was largest in savannas. Agricultural expansion and intensification were primary drivers of declining fire activity. Fewer and smaller fires reduced aerosol concentrations, modified vegetation structure, and increased the magnitude of the terrestrial carbon sink. Fire models were unable to reproduce the pattern and magnitude of observed declines, suggesting that they may overestimate fire emissions in future projections. Using economic and demographic variables, we developed a conceptual model for predicting fire in human-dominated landscapes.

Concepts: Carbon dioxide, Mathematics, Earth, Future, Climate change, Grassland, Landscape ecology, Biome


Causes of over-dispersed barren “fairy circles” that are often surrounded by ca. 0.5 m tall peripheral grasses in a matrix of shorter (ca. 0.2 m tall) grasses in Namibian grasslands remain mysterious. It was hypothesized that the fairy circles are the consequence of self-organizing spatial vegetation patterning arising from resource competition and facilitation. We examined the edaphic properties of fairy circles and variation in fairy circle size, density and landscape occupancy (% land surface) with edaphic properties and water availability at a local scale (<50 km) and with climate and vegetation characteristics at a regional scale. Soil moisture in the barren fairy circles declines from the center towards the periphery and is inversely correlated with soil organic carbon, possibly indicating that the peripheral grass roots access soil moisture that persists into the dry season within fairy circles. Fairy circle landscape occupancy is negatively correlated with precipitation and soil [N], consistent with fairy circles being the product of resource-competition. Regional fairy circle presence/absence is highly predictable using an empirical model that includes narrow ranges of vegetation biomass, precipitation and temperature seasonality as predictor variables, indicating that fairy circles are likely a climate-dependent emergent phenomenon. This dependence of fairy circle occurrence on climate explains why fairy circles in some locations may appear and disappear over time. Fairy circles are only over-dispersed at high landscape occupancies, indicating that inter-circle competition may determine their spacing. We conclude that fairy circles are likely to be an emergent arid-grassland phenomenon that forms as a consequence of peripheral grass resource-competition and that the consequent barren circle may provide a resource-reservoir essential for the survival of the larger peripheral grasses and provides a habitat for fossicking fauna.

Concepts: Water, Soil, Emergence, Grassland


One of the key gaps in understanding the impacts of predation by small mammalian predators on prey is how habitat structure affects the hunting success of small predators, such as feral cats. These effects are poorly understood due to the difficulty of observing actual hunting behaviours. We attached collar-mounted video cameras to feral cats living in a tropical savanna environment in northern Australia, and measured variation in hunting success among different microhabitats (open areas, dense grass and complex rocks). From 89 hours of footage, we recorded 101 hunting events, of which 32 were successful. Of these kills, 28% were not eaten. Hunting success was highly dependent on microhabitat structure surrounding prey, increasing from 17% in habitats with dense grass or complex rocks to 70% in open areas. This research shows that habitat structure has a profound influence on the impacts of small predators on their prey. This has broad implications for management of vegetation and disturbance processes (like fire and grazing) in areas where feral cats threaten native fauna. Maintaining complex vegetation cover can reduce predation rates of small prey species from feral cat predation.

Concepts: Habitat, Predation, Cat, Grassland, Hunting, Herbivore, Dog, Feral cat


The jump-yip display of black-tailed prairie dogs (Cynomys ludovicianus) is contagious, spreading through a prairie dog town as ‘the wave’ through a stadium. Because contagious communication in primates serves to assess conspecific social awareness, we investigated whether instigators of jump-yip bouts adjusted their behaviour relative to the response of conspecifics recruited to display bouts. Increased responsiveness of neighbouring town members resulted in bout initiators devoting a significantly greater proportion of time to active foraging. Contagious jump-yips thus function to assess neighbours' alertness, soliciting social information to assess effective conspecific group size in real time and reveal active probing of conspecific awareness consistent with theory of mind in these group-living rodents.

Concepts: Rodent, Grassland, Squirrel, Prairie dog, Marmot


BACKGROUND: Landscape ethnoecology focuses on the ecological features of the landscape, how the landscape is perceived, and used by people who live in it. Though studying folk classifications of species has a long history, the comparative study of habitat classifications is just beginning. I studied the habitat classification of herders in a Hungarian steppe, and compared it to classifications of botanists and laymen. METHODS: For a quantitative analysis the picture sort method was used. Twenty-three pictures of 7-11 habitat types were sorted by 25 herders. ‘Density’ of pictures along the habitat gradient of the Hortobagy salt steppe was set as equal as possible, but pictures differed in their dominant species, wetness, season, etc. Before sorts, herders were asked to describe pictures to assure proper recognition of habitats. RESULTS: Herders classified the images into three main (and 6 smaller) groups: (1) fertile habitats at the higher parts of the habitat gradient (partos, lit. on the shore); (2) saline habitats (szik, lit. salt or saline place), and (3) meadows and marshes (lapos, lit. flooded) at the lower end of the habitat gradient. Sharpness of delimitation changed along the gradient. Saline habitats were the most isolated from the rest. Botanists identified 6 groups. Laymen grouped habitats in a less coherent way. As opposed to my expectations, botanical classification was not more structured than that done by herders. I expected and found high correspondence between the classifications by herders, botanists and laymen. All tended to recognize similar main groups: wetlands, “good grass” and dry/saline habitats. Two main factors could have been responsible for similar classifications: salient features correlated (e.g. salinity recognizable by herders and botanists but not by laymen correlated with the density of grasslands or height of vegetation recognizable also for laymen), or the same salient features were used as a basis for sorting (wetness, and abiotic stress). CONCLUSIONS: Despite all the difficulties of studying habitat classifications (more implicit, more variable knowledge than knowledge on species), conducting landscape ethnoecological research will inevitably reveal a deeper human understanding of biological organization at a supraspecific level, where natural discontinuities are less sharp than at the species or population level.

Concepts: Biology, Species, Botany, Vegetation, Grassland, Biological classification, Hungary, Habitat fragmentation


Increased fire frequency has been shown to promote alien plant invasions in the western United States, resulting in persistent vegetation type change. Short interval fires are widely considered to be detrimental to reestablishment of shrub species in southern California chaparral, facilitating the invasion of exotic annuals and producing “type conversion”. However, supporting evidence for type conversion has largely been at local, site scales and over short post-fire time scales. Type conversion has not been shown to be persistent or widespread in chaparral, and past range improvement studies present evidence that chaparral type conversion may be difficult and a relatively rare phenomenon across the landscape. With the aid of remote sensing data covering coastal southern California and a historical wildfire dataset, the effects of short interval fires (<8 years) on chaparral recovery were evaluated by comparing areas that burned twice to adjacent areas burned only once. Twelve pairs of once- and twice-burned areas were compared using normalized burn ratio (NBR) distributions. Correlations between measures of recovery and explanatory factors (fire history, climate and elevation) were analyzed by linear regression. Reduced vegetation cover was found in some lower elevation areas that were burned twice in short interval fires, where non-sprouting species are more common. However, extensive type conversion of chaparral to grassland was not evident in this study. Most variables, with the exception of elevation, were moderately or poorly correlated with differences in vegetation recovery.

Concepts: Climate change, Vegetation, Grassland, Remote sensing, Wildfire, Shrubland, Chaparral, California chaparral and woodlands