SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Factor IX

39

Background The prevention of bleeding with adequately sustained levels of clotting factor, after a single therapeutic intervention and without the need for further medical intervention, represents an important goal in the treatment of hemophilia. Methods We infused a single-stranded adeno-associated viral (AAV) vector consisting of a bioengineered capsid, liver-specific promoter and factor IX Padua (factor IX-R338L) transgene at a dose of 5×1011 vector genomes per kilogram of body weight in 10 men with hemophilia B who had factor IX coagulant activity of 2% or less of the normal value. Laboratory values, bleeding frequency, and consumption of factor IX concentrate were prospectively evaluated after vector infusion and were compared with baseline values. Results No serious adverse events occurred during or after vector infusion. Vector-derived factor IX coagulant activity was sustained in all the participants, with a mean (±SD) steady-state factor IX coagulant activity of 33.7±18.5% (range, 14 to 81). On cumulative follow-up of 492 weeks among all the participants (range of follow-up in individual participants, 28 to 78 weeks), the annualized bleeding rate was significantly reduced (mean rate, 11.1 events per year [range, 0 to 48] before vector administration vs. 0.4 events per year [range, 0 to 4] after administration; P=0.02), as was factor use (mean dose, 2908 IU per kilogram [range, 0 to 8090] before vector administration vs. 49.3 IU per kilogram [range, 0 to 376] after administration; P=0.004). A total of 8 of 10 participants did not use factor, and 9 of 10 did not have bleeds after vector administration. An asymptomatic increase in liver-enzyme levels developed in 2 participants and resolved with short-term prednisone treatment. One participant, who had substantial, advanced arthropathy at baseline, administered factor for bleeding but overall used 91% less factor than before vector infusion. Conclusions We found sustained therapeutic expression of factor IX coagulant activity after gene transfer in 10 participants with hemophilia who received the same vector dose. Transgene-derived factor IX coagulant activity enabled the termination of baseline prophylaxis and the near elimination of bleeding and factor use. (Funded by Spark Therapeutics and Pfizer; ClinicalTrials.gov number, NCT02484092 .).

Concepts: Gene, Genetics, Blood, Coagulation, Hemostasis, Haemophilia A, Haemophilia B, Factor IX

33

Antibodies (inhibitors) developed by hemophilia B patients against coagulation factor IX (FIX) are challenging to eliminate because of anaphylaxis or nephrotic syndrome after continued infusion. To address this urgent unmet medical need, FIX fused with a transmucosal carrier (CTB) was produced in a commercial lettuce (Simpson Elite) cultivar using species specific chloroplast vectors regulated by endogenous psbA sequences. CTB-FIX (∼1 mg/g) in lyophilized cells was stable with proper folding, disulfide bonds and pentamer assembly when stored ∼2 years at ambient temperature. Feeding lettuce cells to hemophilia B mice delivered CTB-FIX efficiently to the gut immune system, induced LAP(+) regulatory T cells and suppressed inhibitor/IgE formation and anaphylaxis against FIX. Lyophilized cells enabled 10-fold dose escalation studies and successful induction of oral tolerance was observed in all tested doses. Induction of tolerance in such a broad dose range should enable oral delivery to patients of different age groups and diverse genetic background. Using Fraunhofer cGMP hydroponic system, ∼870 kg fresh or 43.5 kg dry weight can be harvested per 1000 ft(2) per annum yielding 24,000-36,000 doses for 20-kg pediatric patients, enabling first commercial development of an oral drug, addressing prohibitively expensive purification, cold storage/transportation and short shelf life of current protein drugs.

Concepts: Blood, Coagulation, Haemophilia A, Haemophilia B, Factor X, Factor XI, Factor VII, Factor IX

32

A global Phase 3 study evaluated the pharmacokinetics, efficacy and safety of recombinant fusion protein linking coagulation factor IX with albumin (rIX-FP) in 63 previously treated male patients (12-61 years) with severe hemophilia B (FIX activity ≤ 2%). The study included 2 groups: Group 1 patients received routine prophylaxis once every 7 days for 26 weeks, followed by either 7-, 10- or 14-day prophylaxis regimen for a mean of 50, 38, or 51 weeks, respectively; Group 2 patients received on-demand treatment for bleeding episodes for 26 weeks and then switched to a 7 day prophylaxis regimen for a mean of 45 weeks. The mean terminal half-life of rIX-FP was 102 hours, 4.3-fold longer than previous factor IX (FIX) treatment. Patients maintained a mean trough of 20 and 12 IU/dL FIX activity on prophylaxis with rIX-FP 40 IU/kg weekly and 75 IU/kg every 2 weeks, respectively. There was a 100% reduction in median annualized spontaneous bleeding rate (AsBR) and 100% resolution of target joints when subjects switched from on-demand to prophylaxis treatment with rIX-FP (P <0.0001). The median AsBR was 0.00 for all prophylaxis regimens. Overall, 98.6% of bleeding episodes were treated successfully, including 93.6% that were treated with a single injection. No patient developed an inhibitor and no safety concerns were identified. These results indicate that rIX-FP is safe and effective for preventing and treating bleeding episodes in patients with hemophilia B at dosing regimens of 40 IU/kg weekly and 75 IU/kg every 2 weeks. Clinicaltrials.gov (NCT0101496274).

Concepts: Blood, Coagulation, Haemophilia B, Factor X, Factor VII, Factor IX

29

Hemophilia B, or the “royal disease,” arises from mutations in coagulation factor IX (F9). Mutations within the F9 promoter are associated with a remarkable hemophilia B subtype, termed hemophilia B Leyden, in which symptoms ameliorate after puberty. Mutations at the -5/-6 site (nucleotides -5 and -6 relative to the transcription start site, designated +1) account for the majority of Leyden cases and have been postulated to disrupt the binding of a transcriptional activator, the identity of which has remained elusive for more than 20 years. Here, we show that ONECUT transcription factors (ONECUT1 and ONECUT2) bind to the -5/-6 site. The various hemophilia B Leyden mutations that have been reported in this site inhibit ONECUT binding to varying degrees, which correlate well with their associated clinical severities. In addition, expression of F9 is crucially dependent on ONECUT factors in vivo, and as such, mice deficient in ONECUT1, ONECUT2, or both exhibit depleted levels of F9. Taken together, our findings establish ONECUT transcription factors as the missing hemophilia B Leyden regulators that operate through the -5/-6 site.

Concepts: DNA, Gene expression, Transcription, Coagulation, Transcription factor, Activator, Haemophilia B, Factor IX

28

Hemophilia A and hemophilia B are caused by congenital deficiency of factor VIII and factor IX, respectively, and may lead to recurrent, spontaneous bleeding into the muscles and joints resulting in disabling arthropathy. Effective management is available in the form of prophylactic infusions of clotting factor concentrates which have been demonstrated to prevent bleeding episodes and greatly improve the quality of life of these patients. Prophylaxis is, however, expensive. Usual dosing regimens rely on weight based calculations but dosing with an understanding of an individual’s pharmacokinetic response has been demonstrated to be more effective in predicting clotting factor levels that protect against bleeding episodes. Standard pharmacokinetic studies require a prohibitive number of time sampling points but recent population or Bayesian pharmacokinetics can be used to provide an accurate estimation of an individual’s pharmacokinetic response using a limited number of sampling time points. The use of population pharmacokinetics has the potential to greatly increase the use of pharmacokinetic dosing regimens and optimize the use of clotting factor concentrates in patients with hemophilia. Pediatr Blood Cancer 2012; 60: S27-S29. © 2012 Wiley Periodicals, Inc.

Concepts: Blood, Coagulation, Pharmacokinetics, Haemophilia A, Haemophilia B, Factor X, Coagulation system, Factor IX

21

Safe and efficient delivery of messenger RNAs for protein replacement therapies offers great promise but remains challenging. In this report, we demonstrate systemic, in vivo, nonviral mRNA delivery through lipid nanoparticles (LNPs) to treat a Factor IX (FIX)-deficient mouse model of hemophilia B. Delivery of human FIX (hFIX) mRNA encapsulated in our LUNAR LNPs results in a rapid pulse of FIX protein (within 4-6 h) that remains stable for up to 4-6 d and is therapeutically effective, like the recombinant human factor IX protein (rhFIX) that is the current standard of care. Extensive cytokine and liver enzyme profiling showed that repeated administration of the mRNA-LUNAR complex does not cause any adverse innate or adaptive immune responses in immune-competent, hemophilic mice. The levels of hFIX protein that were produced also remained consistent during repeated administrations. These results suggest that delivery of long mRNAs is a viable therapeutic alternative for many clotting disorders and for other hepatic diseases where recombinant proteins may be unaffordable or unsuitable.

Concepts: DNA, Protein, Cell nucleus, Transcription, RNA, Ribosome, Messenger RNA, Factor IX

4

We investigated the efficacy of liver-directed gene therapy using lentiviral vectors in a large animal model of hemophilia B and evaluated the risk of insertional mutagenesis in tumor-prone mouse models. We showed that gene therapy using lentiviral vectors targeting the expression of a canine factor IX transgene in hepatocytes was well tolerated and provided a stable long-term production of coagulation factor IX in dogs with hemophilia B. By exploiting three different mouse models designed to amplify the consequences of insertional mutagenesis, we showed that no genotoxicity was detected with these lentiviral vectors. Our findings suggest that lentiviral vectors may be an attractive candidate for gene therapy targeted to the liver and may be potentially useful for the treatment of hemophilia.

Concepts: Coagulation, Liver, Haemophilia A, Haemophilia B, Factor X, Factor XI, Factor VII, Factor IX

2

Nonacog beta pegol (N9-GP) is a novel recombinant factor IX conjugated with a 40kDa branched polyethylene glycol (PEG) to extend plasma half-life (t½) compared with native FIX, developed for the treatment of haemophilia B. This is the first time distribution, metabolism, and excretion data of N9-GP have been presented. ADME studies were performed using single i.v. doses of radiolabelled N9-GP administered to rats, focussing on the biological fate of the 40kDa PEG. Results indicated that N9-GP-related radioactivity was distributed throughout the body, being most abundant in highly vascularised tissues, and with lowest levels seen in the central nervous system. N9-GP was cleared from plasma within 1week after dosing, while total radioactivity was eliminated more slowly, in a more pronounced biphasic manner. N9-GP seems to be cleared via receptor-mediated uptake (e.g. in the liver) or via the reticuloendothelial system with subsequent proteolysis. PEG is thereafter either cleared alongside the protein or released back into circulation. Furthermore, N9-GP-related radioactivity was excreted in both faeces and urine as 40kDa PEG and degradation products. Some PEG-related radioactivity (not in any particular organ) was present in the carcass 12weeks post dose, consistent with the long terminal elimination t½ of plasma radioactivity. As shown here for N9-GP, and previously for other protein-PEG conjugate products, disposition kinetics of conjugates and individual constituents appears to be compound specific. In addition to the size/structure of the PEG and protein moieties, protein-specific clearance pathways may contribute to the disposition of intact conjugate and PEG moiety.

Concepts: Central nervous system, Nervous system, Metabolism, Liver, Dose, Pharmacokinetics, Haemophilia B, Factor IX

2

2

Abstract Objective: To evaluate the health system costs among patients with hemophilia A and B with and without inhibitors over five years. Methods: This was a retrospective, observational study utilizing medical and pharmacy electronic medical records and administrative encounters/claims data tracking US patients between 2006 and 2011. Patients with diagnosis codes for hemophilia A and B were identified. Patients with inhibitors were characterized by utilization of bypassing agents activated prothrombin complex concentrate or factor VIIa on two or more distinct dates. Severity was classified as mild, moderate, or severe based on laboratory tests of clotting factor. Results: There were 160 hemophilia A patients and 54 hemophilia B patients identified. From this group, 7 were designated as patients with inhibitors (5 with hemophilia A and 2 with hemophilia B). Hemophilia A patients without inhibitors reported 65 (41.9%) as being severe, 19 (12.3%) as moderate, and 71 (45.8%) as mild. Hemophilia B patients without inhibitors reported 9 (17.3%) as being severe, 13 (25.0%) had moderate, and 30 (57.7%) had mild hemophilia. All patients with inhibitors had been hospitalized in the previous 5 years compared to 64 (41.3%) with hemophilia A without inhibitors and 22 (42.3%) with hemophilia B without inhibitors. The median aggregate cost per year (including factor and health resource use) was $325,780 for patients with inhibitors compared to $98,334 for hemophilia A patients without inhibitors and $23,265 for hemophilia B patients without inhibitors. Conclusions: The results suggest that while the frequency of inhibitors within the hemophilia cohort was low, there was a higher frequency of hospitalizations and the associated median aggregate costs per year were three-fold higher than those patients without inhibitors. In contrast, hemophilia B patients experience less severe disease and account for lower aggregate yearly costs compared to either patients with hemophilia A or patients with inhibitors.

Concepts: Hospital, Coagulation, Warfarin, Haemophilia, Haemophilia A, Haemophilia B, Coagulation system, Factor IX