SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Eublepharis

32

Tails are an intricate component of the locomotor system for many vertebrates. Leopard geckos (Eublepharis macularius) possess a large tail that is laterally undulated during steady locomotion. However, the tail is readily shed via autotomy, resulting in the loss of tail function, loss in body mass, and a cranial shift in the center of mass. To elucidate the function of tail undulations, we investigated changes in limb kinematics after manipulating the tail artificially by restricting tail undulations and naturally by removing the tail via autotomy. Restricting tail undulations resulted in kinematic adjustments similar to those that occur following tail autotomy, characterized by more flexed hind limb joints. These data suggest that effects of autotomy on locomotion may be linked to the loss of tail movements rather than the loss of mass or a shift in center of mass. We also provide empirical support for the link between lateral tail undulations and step length through the rotation of the pelvic girdle and retraction of the femur. Restriction and autotomy of the tail limits pelvic rotation, which reduces femur retraction and decreases step length. Our findings demonstrate a functional role for tail undulations in geckos, which likely applies to other terrestrial vertebrates.

Concepts: Mass, Gecko, Vertebra, Human anatomy, Classical mechanics, Eublepharis, Gekkonidae, Leopard gecko

28

An epizootic of ulcerative to nodular ventral dermatitis was observed in a large breeding colony of 8-month to 5-year-old leopard geckos (Eublepharis macularius) of both sexes. Two representative mature male geckos were euthanized for diagnostic necropsy. The Chrysosporium anamorph of Nannizziopsis vriesii (CANV) was isolated from the skin lesions, and identification was confirmed by sequencing of the internal transcribed spacer region of the rRNA gene. Histopathology revealed multifocal to coalescing dermal and subcutaneous heterophilic granulomas that contained septate fungal hyphae. There was also multifocal epidermal hyperplasia with hyperkeratosis, and similar hyphae were present within the stratum corneum, occasionally with terminal chains of arthroconidia consistent with the CANV. In one case, there was focal extension of granulomatous inflammation into the underlying masseter muscle. This is the first report of dermatitis and cellulitis due to the CANV in leopard geckos.

Concepts: Pathology, Ribosomal RNA, Anatomical pathology, Skin, Granuloma, Eublepharis, Gekkonidae, Leopard gecko

9

Geckos are among the most species-rich reptile groups and the sister clade to all other lizards and snakes. Geckos possess a suite of distinctive characteristics, including adhesive digits, nocturnal activity, hard, calcareous eggshells, and a lack of eyelids. However, one gecko clade, the Eublepharidae, appears to be the exception to most of these ‘rules’ and lacks adhesive toe pads, has eyelids, and lays eggs with soft, leathery eggshells. These differences make eublepharids an important component of any investigation into the underlying genomic innovations contributing to the distinctive phenotypes in ‘typical’ geckos.

Concepts: Reptile, Gecko, Squamata, Lizard, Eublepharis, Gekkonidae, Leopard gecko, Pet lizards

5

As for many lizards, the leopard gecko (Eublepharis macularius) can self-detach its tail to avoid predation and then regenerate a replacement. The replacement tail includes a regenerated spinal cord with a simple morphology: an ependymal layer surrounded by nerve tracts. We hypothesized that cells within the ependymal layer of the original spinal cord include populations of neural stem/progenitor cells (NSPCs) that contribute to the regenerated spinal cord. Prior to tail loss, we performed a bromodeoxyuridine pulse-chase experiment and found that a subset of ependymal layer cells (ELCs) were label-retaining after a 140-day chase period. Next, we conducted a detailed spatiotemporal characterization of these cells before, during, and after tail regeneration. Our findings show that SOX2, a hallmark protein of NSPCs, is constitutively expressed by virtually all ELCs before, during, and after regeneration. We also found that during regeneration, ELCs express an expanded panel of NSPC and lineage-restricted progenitor cell markers, including MSI-1, SOX9 and TUJ1. Using electron microscopy, we determined that multiciliated, uniciliated, and biciliated cells are present, although the latter was only observed in regenerated spinal cords. Our results demonstrate that cells within the ependymal layer of the original, regenerating and fully regenerate spinal cord represent a heterogeneous population. These include radial glia comparable to Type E and Type B cells, and a neuronal-like population of cerebrospinal fluid-contacting cells. We propose that spinal cord regeneration in geckos represents a truncation of the restorative trajectory observed in some urodeles and teleosts, resulting in the formation of a structurally distinct replacement. This article is protected by copyright. All rights reserved.

Concepts: Protein, Regeneration, Copyright, Lizard, Eublepharis, Gekkonidae, Leopard gecko

2

Hybridization between distinct species of animals and subsequent genetic introgression plays a considerable role in the speciation process and the emergence of adaptive characters. Fitness of between-species hybrids usually sharply decreases with the divergence time of the concerned species and the divergence depth, which still allows for a successful crossing differs among principal clades of vertebrates. Recently, a review of hybridization events among distinct lizard species revealed that lizards belong to vertebrates with a highly developed ability to hybridize. In spite of this, reliable reports of experimental hybridizations between genetically fairly divergent species are only exceptional. Here, we show the results of the crossing of two distinct allopatric species of eyelid geckos possessing temperature sex determination and lacking sex chromosomes: Eublepharis macularius distributed in Pakistan/Afghanistan area and E. angramainyu, which inhabits Mesopotamia and adjacent areas. We demonstrated that F1 hybrids were viable and fertile, and the introgression of E. angramainyu genes into the E. macularius genome can be enabled via a backcrossing. The examined hybrids (except those of the F2 generation) displayed neither malformations nor a reduced survival. Analyses of morphometric and coloration traits confirmed phenotypic distinctness of both parental species and their F1 hybrids. These findings contrast with long-term geographic and an evolutionary separation of the studied species. Thus, the occurrence of fertile hybrids of comparably divergent species, such as E. angramainyu and E. macularius, may also be expected in other taxa of squamates. This would violate the current estimates of species diversity in lizards.

Concepts: Gene, Genetics, Evolution, Species, Chromosome, Speciation, Lizard, Eublepharis

1

The tail of many species of lizard is used as a site of fat storage, and caudal autotomy is a widespread phenomenon among lizards. This means that caudal fat stores are at risk of being lost if the tail is autotomized. For fat-tailed species, such as the leopard gecko, this may be particularly costly. Previous work has shown that tail regeneration in juveniles of this species is rapid and that it receives priority for energy allocation, even when dietary resources are markedly reduced. We found that the regenerated tails of juvenile leopard geckos are more massive than their original counterparts, regardless of dietary intake, and that they exhibit greater amounts of skeleton, inner fat, muscle and subcutaneous fat than original tails (as assessed through cross-sectional area measurements of positionally equivalent stations along the tail). Autotomy and regeneration result in changes in tail shape, mass and the pattern of tissue distribution within the tail. The regenerated tail exhibits enhanced fat storage capacity, even in the face of a diet that results in significant slowing of body growth. Body growth is thus sacrificed at the expense of rapid tail growth. Fat stores laid down rapidly in the regenerating tail may later be used to fuel body growth or reproductive investment. The regenerated tail thus seems to have adaptive roles of its own, and provides a potential vehicle for studying trade-offs that relate to life history strategy.

Concepts: Regeneration, Gecko, Lizard, Eublepharis, Gekkonidae, Leopard gecko, Pet lizards

0

Captive leopard geckos (Eublepharis macularius) often present to the exotic clinic for gastrointestinal impactions, follicular stasis, or dystocia. To our knowledge, normal ultrasonographic anatomy of these lizards has not been described. The objectives of this prospective, anatomic, analytical study were to develop ultrasound techniques for this species and to describe the normal sonographic anatomy of the head, coelomic cavity, and tail. Eleven, healthy, female leopard geckos were included. A linear array 13-18 MHz transducer was used. Geckos were sedated and restrained in dorsal recumbency for coelomic structure examination and in ventral recumbency for head and tail examinations. Sagittal and transverse images were acquired and authors recorded qualitative and quantitative ultrasonographic characteristics of anatomic structures. The ventral surface of the lungs, liver, gallbladder, caudal vena cava, portal vein, ventral abdominal vein, aorta, ovarian follicles, fat bodies, tail, and brain were visualized in 10 of 11 individuals. In one individual, molt precluded ultrasonographic examination. The heart, kidneys, urinary bladder, spleen, and pancreas were not visualized. The digestive tract was observed in 10 individuals but was too small to be measured. Findings from the current study could be used as a reference for future studies of leopard geckos.

Concepts: Organ, Urinary bladder, Ureter, Qualitative research, Anatomy, Abdomen, Digestion, Eublepharis

0

OBJECTIVE To describe diagnosis, treatment, and outcome of and risk factors for ophthalmic disease in leopard geckos (Eublepharis macularius) evaluated at a veterinary teaching hospital. DESIGN Retrospective case series. ANIMALS 112 of 144 (78%) leopard geckos that were evaluated at a veterinary teaching hospital in January 1985 through October 2013 and for which sufficient medical record information was available. PROCEDURES Information from medical records was used to identify leopard geckos with ophthalmic disease, characterize cases, and determine risk factors for the presence of ophthalmic disease. RESULTS Of the 112 leopard geckos, 52 (46%) had ophthalmic disease (mainly corneal or conjunctival disease). Female geckos were less likely to have ophthalmic disease, and there was a positive association between increasing age and ophthalmic disease. Use of a paper towel substrate, absence of any heat source, and lack of vitamin A supplementation were positively associated with a diagnosis of ophthalmic disease. Head dysecdysis was the only concurrent disorder significantly associated with ophthalmic disease. At necropsy, 5 affected leopard geckos had squamous metaplasia of the conjunctivae. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that ophthalmic disease is a common finding in leopard geckos. The cause of ocular surface disease in leopard geckos may be multifactorial, and hypovitaminosis A may be an important risk factor. Although animals receiving supplemental vitamin A were less likely to have ophthalmic disease, further understanding is required regarding the metabolism of and nutritional requirements for vitamin A in leopard geckos.

Concepts: Epidemiology, Nutrition, Vitamin, Vitamin C, Vitamin A, Eublepharis, Gekkonidae, Leopard gecko

0

The skin is a bilayered organ that serves as a key barrier between an organism and its environment. In addition to protecting against microbial invasion, physical trauma and environmental damage, skin participates in maintaining homeostasis. Skin is also capable of spontaneous self-repair following injury. These functions are mediated by numerous pleiotrophic growth factors, including members of the vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and transforming growth factor β (TGFβ) families. Although growth factor expression has been well documented in mammals, particularly during wound healing, for groups such as reptiles less is known. Here, we investigate the spatio-temporal pattern of expression of multiple growth factors in normal skin and following a full-thickness cutaneous injury in the representative lizard Eublepharis macularius, the leopard gecko. Unlike mammals, leopard geckos can heal cutaneous wounds without scarring. We demonstrate that before, during and after injury, keratinocytes of the epidermis express a diverse panel of growth factor ligands and receptors, including: VEGF, VEGFR1, VEGFR2, and phosphorylated VEGFR2; FGF-2 and FGFR1; and phosphorylated SMAD2, TGFβ1, and activin βA. Unexpectedly, only the tyrosine kinase receptors VEGFR1 and FGFR1 were dynamically expressed, and only during the earliest phases of re-epithelization; otherwise all the proteins of interest were constitutively present. We propose that the ubiquitous pattern of growth factor expression by keratinocytes is associated with various roles during tissue homeostasis, including protection against ultraviolet photodamage and coordinated body-wide skin shedding.

Concepts: Signal transduction, Wound healing, Healing, Angiogenesis, Fibroblast growth factor, Skin, Growth factors, Eublepharis

0

An extensive research effort is devoted to the evolution of life-histories and processes underlying the variation in adult body weight; however, in this regard, some animal taxa remain neglected. Here we report rates and timing of growth recorded in two wild-derived populations of a model lizard species, Eublepharis macularius (M, W), other two related species, i.e., E. angramainyu (A) and E. sp. (D), and their between-species hybrids. We detected clear differences among the examined species/populations, which can be interpreted in the terms of “fast - slow” continuum of life-history strategies. The mean asymptotic body size was the highest in A and further decreased in the following order: M, W, and D. In contrast, the growth rate showed an opposite pattern. Counter-intuitively, the largest species exhibited the slowest growth rates. The final body size was determined mainly by the inflexion point. This parameter reflecting the duration of exponential growth increased with mean asymptotic body size and easily overcompensated the effect of decreasing growth rates in larger species. Compared to the parental species, the F1 and backcross hybrids exhibited intermediate values of growth parameters. Thus, except for the case of the F2 hybrid of MxA, we failed to detect deleterious effects of hybridization in these animals with temperature sex determination.

Concepts: Evolution, Biology, Mass, Rates, Probability theory, Genus, Exponential growth, Eublepharis