SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Equidae

266

Although previous studies of horses have investigated their facial expressions in specific contexts, e.g. pain, until now there has been no methodology available that documents all the possible facial movements of the horse and provides a way to record all potential facial configurations. This is essential for an objective description of horse facial expressions across a range of contexts that reflect different emotional states. Facial Action Coding Systems (FACS) provide a systematic methodology of identifying and coding facial expressions on the basis of underlying facial musculature and muscle movement. FACS are anatomically based and document all possible facial movements rather than a configuration of movements associated with a particular situation. Consequently, FACS can be applied as a tool for a wide range of research questions. We developed FACS for the domestic horse (Equus caballus) through anatomical investigation of the underlying musculature and subsequent analysis of naturally occurring behaviour captured on high quality video. Discrete facial movements were identified and described in terms of the underlying muscle contractions, in correspondence with previous FACS systems. The reliability of others to be able to learn this system (EquiFACS) and consistently code behavioural sequences was high-and this included people with no previous experience of horses. A wide range of facial movements were identified, including many that are also seen in primates and other domestic animals (dogs and cats). EquiFACS provides a method that can now be used to document the facial movements associated with different social contexts and thus to address questions relevant to understanding social cognition and comparative psychology, as well as informing current veterinary and animal welfare practices.

Concepts: Domestication, Donkey, Muscle contraction, Equidae, Wild horse, Equus, Psychology, Horse

155

The aim of our study was to explore the association between dominance rank and body condition in outdoor group-living domestic horses, Equus caballus. Social interactions were recorded using a video camera during a feeding test, applied to 203 horses in 42 herds. Dominance rank was assigned to 194 individuals. The outcome variable body condition score (BCS) was recorded using a 9-point scale. The variables age and height were recorded and considered as potential confounders or effect modifiers. Results were analysed using multivariable linear and logistic regression techniques, controlling for herd group as a random effect. More dominant (p = 0.001) individuals generally had a higher body condition score (p = 0.001) and this association was entirely independent of age and height. In addition, a greater proportion of dominant individuals fell into the obese category (BCS ≥ 7/9, p = 0.005). There were more displacement encounters and a greater level of interactivity in herds that had less variation in age and height, lending strength to the hypothesis that phenotypic variation may aid cohesion in group-living species. In addition there was a strong quadratic relationship between age and dominance rank (p < 0.001), where middle-aged individuals were most likely to be dominant. These results are the first to link behavioural predictors to body condition and obesity status in horses and should prompt the future consideration of behavioural and social factors when evaluating clinical disease risk in group-living animals.

Concepts: Pony, Donkey, Domestication of the horse, Equus, Equidae, Wild horse, Regression analysis, Horse

36

The rich fossil record of equids has made them a model for evolutionary processes. Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560-780 thousand years before present (kyr bp). Our data represent the oldest full genome sequence determined so far by almost an order of magnitude. For comparison, we sequenced the genome of a Late Pleistocene horse (43 kyr bp), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalski’s horse (E. f. przewalskii) and a donkey (E. asinus). Our analyses suggest that the Equus lineage giving rise to all contemporary horses, zebras and donkeys originated 4.0-4.5 million years before present (Myr bp), twice the conventionally accepted time to the most recent common ancestor of the genus Equus. We also find that horse population size fluctuated multiple times over the past 2 Myr, particularly during periods of severe climatic changes. We estimate that the Przewalski’s and domestic horse populations diverged 38-72 kyr bp, and find no evidence of recent admixture between the domestic horse breeds and the Przewalski’s horse investigated. This supports the contention that Przewalski’s horses represent the last surviving wild horse population. We find similar levels of genetic variation among Przewalski’s and domestic populations, indicating that the former are genetically viable and worthy of conservation efforts. We also find evidence for continuous selection on the immune system and olfaction throughout horse evolution. Finally, we identify 29 genomic regions among horse breeds that deviate from neutrality and show low levels of genetic variation compared to the Przewalski’s horse. Such regions could correspond to loci selected early during domestication.

Concepts: Evolution, Domestication of the horse, Equidae, Przewalski's Horse, Wild horse, Donkey, Equus, Horse

30

It has recently been shown that some non-human animals can cross-modally recognize members of their own taxon. What is unclear is just how plastic this recognition system can be. In this study, we investigate whether an animal, the domestic horse, is capable of spontaneous cross-modal recognition of individuals from a morphologically very different species. We also provide the first insights into how cross-modal identity information is processed by examining whether there are hemispheric biases in this important social skill. In our preferential looking paradigm, subjects were presented with two people and playbacks of their voices to determine whether they were able to match the voice with the person. When presented with familiar handlers subjects could match the specific familiar person with the correct familiar voice. Horses were significantly better at performing the matching task when the congruent person was standing on their right, indicating marked hemispheric specialization (left hemisphere bias) in this ability. These results are the first to demonstrate that cross-modal recognition in animals can extend to individuals from phylogenetically very distant species. They also indicate that processes governed by the left hemisphere are central to the cross-modal matching of visual and auditory information from familiar individuals in a naturalistic setting.

Concepts: Donkey, Domestication of the horse, Equus, Equidae, Species, Wild horse, Mammal, Horse

28

Referential communication occurs when a sender elaborates its gestures to direct the attention of a recipient to its role in pursuit of the desired goal, e.g. by pointing or showing an object, thereby informing the recipient what it wants. If the gesture is successful, the sender and the recipient focus their attention simultaneously on a third entity, the target. Here we investigated the ability of domestic horses (Equus caballus) to communicate referentially with a human observer about the location of a desired target, a bucket of food out of reach. In order to test six operational criteria of referential communication, we manipulated the recipient’s (experimenter) attentional state in four experimental conditions: frontally oriented, backward oriented, walking away from the arena and frontally oriented with other helpers present in the arena. The rate of gaze alternation was higher in the frontally oriented condition than in all the others. The horses appeared to use both indicative (pointing) and non-indicative (nods and shakes) head gestures in the relevant test conditions. Horses also elaborated their communication by switching from a visual to a tactile signal and demonstrated perseverance in their communication. The results of the tests revealed that horses used referential gestures to manipulate the attention of a human recipient so to obtain an unreachable resource. These are the first such findings in an ungulate species.

Concepts: Donkey, Domestication of the horse, Odd-toed ungulate, Equus, Equidae, Wild horse, Gesture, Horse

28

A survey to determine current prevalence of Gasterophilus spp. (bot flies) in equids (n=400) at necropsy in slaughtered horses was conducted at the abattoir in Rawicz. The evaluation was performed according to sex, age, larval stages, severity of infestation and localization, respectively. Only Gasterophilus intestinalis and Gasterophilus nasalis were detected. The prevalence determined in the eastern part of Poland was of 47%. The high prevalence of this parasite infection in the Polish horse population confirms that Gasterophilosis spp. has to be taken into serious consideration and prophylactic measures might be indicated.

Concepts: Equus, Equine parasites, Flies, Equidae, Oestridae, Myiasis, Larva, Horse

27

Secretoglobin family 1A member 1 (SCGB 1A1) is a small anti-inflammatory and immunomodulatory protein that is abundantly secreted in airway surface fluids. We recently reported the existence of three distinct SCGB1A1 genes in the domestic horse genome as opposed to the single gene copy consensus present in other mammals. The origin of SCGB1A1 gene triplication and the evolutionary relationship of the three genes amongst Equidae family members are unknown. For this study, SCGB1A1 genomic data were collected from various Equus individuals including E. caballus, E. przewalskii, E. asinus, E. grevyi, and E. quagga. Three SCGB1A1 genes in E. przewalskii, two SCGB1A1 genes in E. asinus, and a single SCGB1A1 gene in E. grevyi and E. quagga were identified. Sequence analysis revealed that the non-synonymous nucleotide substitutions between the different equid genes coded for 17 amino acid changes. Most of these changes localized to the SCGB 1A1 central cavity that binds hydrophobic ligands, suggesting that this area of SCGB 1A1 evolved to accommodate diverse molecular interactions. Three-dimensional modeling of the proteins revealed that the size of the SCGB 1A1 central cavity is larger than that of SCGB 1A1A. Altogether, these findings suggest that evolution of the SCGB1A1 gene may parallel the separation of caballine and non-caballine species amongst Equidae, and may indicate an expansion of function for SCGB1A1 gene products.

Concepts: Equidae, Horse, Equus, Protein, Genome, Gene, DNA, Evolution

27

The prevalence of Balantidium coli among donkeys in Lahore and adjoining areas was surveyed and a trial conducted to determine the efficacy of two antiprotozoal drugs: secnidazole (Dysen Forte) and Kalonji (Nigella sativa). Four-hundred donkeys were examined, and 73 (18.3%) were found positive for Balantidium coli. A slight decrease in PCV and an increase in Hb values of infected donkeys were found after antiprotozoal treatment. Secnidazole was 89.5% effective for the treatment of equine balantidiasis compared to 40.0% for Nigella sativa. This is the first report of balantidiasis in equines from Pakistan. It is not known if balantidiasis is an emerging problem in equines or whether it is a newly reported infection.

Concepts: Equidae, Donkey, Equus, Balantidium coli, Balantidiasis, Horse

23

‘The invisible horse’ was the central topic discussed at a conference organised by the equine charity World Horse Welfare in London last month. Gill Harris reports.

Concepts: Tarpan, Onager, Przewalski's Horse, Pony, Donkey, Equidae, Equus, Horse

19

In humans, facial expressions are rich sources of social information and have an important role in regulating social interactions. However, the extent to which this is true in non-human animals, and particularly in non-primates, remains largely unknown. Therefore we tested whether domestic horses (Equus caballus) could discriminate between facial expressions of their conspecifics captured in different contexts, and whether viewing these expressions elicited functionally relevant reactions. Horses were more likely to approach photographic stimuli displaying facial expressions associated with positive attention and relaxation, and to avoid stimuli displaying an expression associated with aggression. Moreover, differing patterns of heart rate changes were observed in response to viewing the positive anticipation and agonistic facial expressions. These results indicate that horses spontaneously discriminate between photographs of unknown conspecifics portraying different facial expressions, showing appropriate behavioural and physiological responses. Thus horses, an animal far-removed from the primate lineage, also have the ability to use facial expressions as a means of gaining social information and potentially regulating social interactions.

Concepts: Sociology, Equidae, Equus, Wild horse, Human, Primate, Mammal, Horse