Discover the most talked about and latest scientific content & concepts.

Concept: Enzymes


The magnetic chitosan nanocomposites have been studied intensively and been used practically in various biomedical and biological applications including enzyme immobilization. However, the loading capacity and the remained activity of immobilized enzyme based on existing approaches are not satisfied. Simpler and more effective immobilization strategies are needed. Here we report a simple catechol modified protocol for preparing a novel catechol-chitosan (CCS)-iron oxide nanoparticles (IONPs) composites carrying adhesive moieties with strong surface affinity. The ω-transaminase (ω-TA) was immobilized onto this magnetic composite via nucleophilic reactions between catechol and ω-TA. Under optimal conditions, 87.5% of the available ω-TA was immobilized on the composite, yielding an enzyme loading capacity as high as 681.7 mg/g. Furthermore, the valuation of enzyme activity showed that ω-TA immobilized on CCS-IONPs displayed enhanced pH and thermal stability compared to free enzyme. Importantly, the immobilized ω-TA retained more than 50% of its initial activity after 15 repeated reaction cycles using magnetic separation and 61.5% of its initial activity after storage at 4°C in phosphate buffered saline (PBS) for 15 days. The results suggested that such adhesive magnetic composites may provide an improved platform technology for bio-macromolecules immobilized.

Concepts: Composite video, Composite material, Epoxy, Enzymes, Buffer solution, PH, Enzyme, Immobilized enzyme


Plant contamination by polycyclic aromatic hydrocarbons (PAHs) is crucial to food safety and human health. Enzyme inhibitors are commonly utilized in agriculture to control plant metabolism of organic components. This study revealed that the enzyme inhibitor ascorbic acid (AA) significantly reduced the activities of peroxidase (POD) and polyphenol oxidase (PPO), thus enhancing the potential risks of PAH contamination in tall fescue (Festuca arundinacea Schreb.). POD and PPO enzymes in vitro effectively decomposed naphthalene (NAP), phenanthrene (PHE) and anthracene (ANT). The presence of AA reduced POD and PPO activities in plants, and thus was likely responsible for enhanced PAH accumulation in tall fescue. This conclusion is supported by the significantly enhanced uptake of PHE in plants in the presence of AA, and the positive correlation between enzyme inhibition efficiencies and the rates of metabolism of PHE in tall fescue roots. This study provides a new perspective, that the common application of enzyme inhibitors in agricultural production could increase the accumulation of organic contaminants in plants, hence enhancing risks to food safety and quality.

Concepts: Enzymes, Metabolism, Adenosine triphosphate, Nicotinamide adenine dinucleotide, Festuca arundinacea, Enzyme, Enzyme inhibitor, Polycyclic aromatic hydrocarbon


Biological systems use compartmentalisation as a general strategy to control enzymatic reactions by precisely regulating enzyme-substrate interactions. With the advent of DNA nanotechnology, it has become possible to rationally design DNA-based nano-containers with programmable structural and dynamic properties. These DNA nanostructures have been used to cage enzymes, but control over enzyme-substrate interactions using a dynamic DNA nanostructure has not been achieved yet. Here we introduce a DNA origami device that functions as a nanoscale vault: an enzyme is loaded in an isolated cavity and the access to free substrate molecules is controlled by a multi-lock mechanism. The DNA vault is characterised for features such as reversible opening/closing, cargo loading and wall porosity, and is shown to control the enzymatic reaction catalysed by an encapsulated protease. The DNA vault represents a general concept to control enzyme-substrate interactions by inducing conformational changes in a rationally designed DNA nanodevice.

Concepts: Ribozyme, DNA nanotechnology, Active site, Enzymes, Nanotechnology, Catalysis, DNA, Enzyme


Lipases are promising enzymes that catalyze the hydrolysis of triacylglycerol ester bonds at the oil/water interface. Apart from allowing biocatalyst reuse, immobilization can also affect enzyme structure consequently influencing its activity, selectivity, and stability. The lipase from Penicillium sp. section Gracilenta (CBMAI 1583) was successfully immobilized on supports bearing butyl, phenyl, octyl, octadecyl, and divinylbenzyl hydrophobic moieties wherein lipases were adsorbed through the highly hydrophobic opened active site. The highest activity in aqueous medium was observed for the enzyme adsorbed on octyl support, with a 150% hyperactivation regarding the soluble enzyme activity, and the highest adsorption strength was verified with the most hydrophobic support (octadecyl Sepabeads), requiring 5% Triton X-100 to desorb the enzyme from the support. Most of the derivatives presented improved properties such as higher stability to pH, temperature, and organic solvents than the covalently immobilized CNBr derivative (prepared under very mild experimental conditions and thus a reference mimicking free-enzyme behavior). A 30.8- and 46.3-fold thermostabilization was achieved in aqueous medium, respectively, by the octyl Sepharose and Toyopearl butyl derivatives at 60 °C, in relation to the CNBr derivative. The octyl- and phenyl-agarose derivatives retained 50% activity after four and seven cycles of p-nitrophenyl palmitate hydrolysis, respectively. Different derivatives exhibited different properties regarding their properties for fish oil hydrolysis in aqueous medium and ethanolysis in anhydrous medium. The most active derivative in ethanolysis of fish oil was the enzyme adsorbed on a surface covered by divinylbenzyl moieties and it was 50-fold more active than the enzyme adsorbed on octadecyl support. Despite having identical mechanisms of immobilization, different hydrophobic supports seem to promote different shapes of the adsorbed open active site of the lipase and hence different functional properties.

Concepts: Adsorption, Starch, PH, Immobilized enzyme, Enzymes, Catalysis, Lipase, Enzyme


β-Amyloid (Aβ) peptides are thought to be critically involved in the etiology of Alzheimer’s disease (AD). The aspartyl protease β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is required for the production of Aβ, and BACE1 inhibition is thus an attractive target for the treatment of AD. We show that verubecestat (MK-8931) is a potent, selective, structurally unique BACE1 inhibitor that reduced plasma, cerebrospinal fluid (CSF), and brain concentrations of Aβ40, Aβ42, and sAPPβ (a direct product of BACE1 enzymatic activity) after acute and chronic administration to rats and monkeys. Chronic treatment of rats and monkeys with verubecestat achieved exposures >40-fold higher than those being tested in clinical trials in AD patients yet did not elicit many of the adverse effects previously attributed to BACE inhibition, such as reduced nerve myelination, neurodegeneration, altered glucose homeostasis, or hepatotoxicity. Fur hypopigmentation was observed in rabbits and mice but not in monkeys. Single and multiple doses were generally well tolerated and produced reductions in Aβ40, Aβ42, and sAPPβ in the CSF of both healthy human subjects and AD patients. The human data were fit to an amyloid pathway model that provided insight into the Aβ pools affected by BACE1 inhibition and guided the choice of doses for subsequent clinical trials.

Concepts: Enzymes, Cerebrospinal fluid, Clinical trial, Neurology, Presenilin, Enzyme, Amyloid precursor protein, Alzheimer's disease


Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We demonstrate its use to determine the first room-temperature structure of RNA polymerase II at high resolution, revealing new structural details. Moreover, the double flow-focusing nozzles were successfully tested with three other protein samples and the first room temperature structure of an extradiol ring-cleaving dioxygenase was solved by utilizing the improved operation and characteristics of these devices.

Concepts: Free electron laser, RNA, Gene, Enzymes, Enzyme, RNA polymerase, Laser, DNA


The mechanisms of enzyme activity on solid substrates are not well understood. Unlike enzyme catalysis in aqueous solutions, enzyme activity on surfaces is complicated by adsorption steps and structural heterogeneities that make enzyme-substrate interactions difficult to characterize. Cellulase enzymes, which catalyze the depolymerization of cellulose, show binding specificities for different cellulose surface morphologies, but the influence of these specificities on the activity of multienzyme mixtures has remained unclear. We developed a metric to quantify binding-target arrangements determined by photoactivated localization microscopy, and we used that metric to show that combinations of cellulases designed to bind within similar but nonidentical morphologies can have synergistic activity. This phenomenon cannot be explained with the binary crystalline or amorphous classifications commonly used to characterize cellulase-binding targets. Our results reveal a strategy for improving the activity of cellulolytic mixtures and demonstrate a versatile method for investigating protein organization on heterogeneous surfaces.

Concepts: Glucose, Solid, Cellulose, Enzymes, Hydrolysis, Cellulase, Enzyme, Catalysis


The inhibition of two human cytosolic carbonic anhydrase (hCA, EC isozymes I, II and human serum isozyme VI, with a series of tosylited aromatic amine derivatives was investigated. The K(I) ranges of compounds 1-14 and acetazolamide against hCA I ranged between 1.130 and- 448.2 μM, against hCA II between 0.103 and- 14.3 μM, and against hCA VI ranged between 0.340 and- 42.39 μM. Tosylited aromatic amine derivatives are thus interesting hCA I, II and VI inhibitors, and might be used as leads for generating enzyme inhibitors eventually targeting other isoforms which have not been assayed yet for their interactions with such agents.

Concepts: Isozyme, Hexokinase, Enzyme, Enzyme inhibitor, Enzymes


Thermostability is an important feature in industrial enzymes: it increases biocatalyst lifetime and enables reactions at higher temperatures, where faster rates and other advantages ultimately reduce the cost of biocatalysis. Here we report the thermostabilization of a chimeric fungal family 6 cellobiohydrolase (HJPlus) by directed evolution using random mutagenesis and recombination of beneficial mutations. Thermostable variant 3C6P has a half-life of 280 minutes at 75°C and a T(50) of 80.1°C, a ∼15°C increase over the thermostable Cel6A from H. insolens (HiCel6A) and a ∼20°C increase over that from H. jecorina (HjCel6A). Most of the mutations also stabilize the less-stable HjCel6A, the wild-type Cel6A closest in sequence to 3C6P. During a 60-hour Avicel hydrolysis, 3C6P released 2.4 times more cellobiose equivalents at its optimum temperature (T(opt) ) of 75°C than HiCel6A at its T(opt) of 60°C. The total cellobiose equivalents released by HiCel6A at 60°C after 60 hours is equivalent to the total released by 3C6P at 75°C after ∼6 hours, a 10-fold reduction in hydrolysis time. A binary mixture of thermostable Cel6A and Cel7A hydrolyzes Avicel synergistically and released 1.8 times more cellobiose equivalents than the wild-type mixture, both mixtures assessed at their respective T(opt) . Crystal structures of HJPlus and 3C6P, determined at 1.5Å and 1.2Å resolution, indicate that the stabilization comes from improved hydrophobic interactions and restricted loop conformations by introduced proline residues. Biotechnol. Bioeng. © 2013 Wiley Periodicals, Inc.

Concepts: Cellulase, Starch, Adenosine triphosphate, Mutation, Enzymes, Cellulose, Hydrolysis, Enzyme


NADPH-cytochrome P450 oxidoreductase (CYPOR) and nitric oxide synthase (NOS), two members of the diflavin oxidoreductase family, are multi-domain enzymes containing distinct FAD and FMN domains connected by a flexible hinge. FAD accepts a hydride ion from NADPH, and reduced FAD donates electrons to FMN, which in turn transfers electrons to the heme center of cytochrome P450 or NOS oxygenase domain. Structural analysis of CYPOR, the prototype of this enzyme family, has revealed the exact nature of the domain arrangement and the role of residues involved in cofactor binding. Recent structural and biophysical studies of CYPOR have shown that the two flavin domains undergo large domain movements during catalysis. NOS isoforms contain additional regulatory elements within the reductase domain that control electron transfer through Ca(2+)-dependent calmodulin (CaM) binding. The recent crystal structure of an iNOS Ca(2+)/CaM-FMN construct, containing the FMN domain in complex with Ca(2+)/CaM, provided structural information on the linkage between the reductase and oxgenase domains of NOS, making it possible to model the holo iNOS structure. This review summarizes recent advances in our understanding of the dynamics of domain movements during CYPOR catalysis and the role of the NOS diflavin reductase domain in the regulation of NOS isozyme activities.

Concepts: Nitric oxide, Metabolism, Nitric oxide synthase, Cytochrome P450, Enzymes, Cytochrome P450 reductase, Electron, Enzyme