SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Electronic nose

187

People struggle to name odors [1-4]. This has been attributed to a diminution of olfaction in trade-off to vision [5-10]. This presumption has been challenged recently by data from the hunter-gatherer Jahai who, unlike English speakers, find odors as easy to name as colors [4]. Is the superior olfactory performance among the Jahai because of their ecology (tropical rainforest), their language family (Aslian), or because of their subsistence (they are hunter-gatherers)? We provide novel evidence from the hunter-gatherer Semaq Beri and the non-hunter-gatherer (swidden-horticulturalist) Semelai that subsistence is the critical factor. Semaq Beri and Semelai speakers-who speak closely related languages and live in the tropical rainforest of the Malay Peninsula-took part in a controlled odor- and color-naming experiment. The swidden-horticulturalist Semelai found odors much more difficult to name than colors, replicating the typical Western finding. But for the hunter-gatherer Semaq Beri odor naming was as easy as color naming, suggesting that hunter-gatherer olfactory cognition is special.

Concepts: Color, Language, Olfaction, Odor, Rainforest, Olfactory fatigue, Electronic nose, Olfactometer

173

How can odor-guided behavior of numerous individual Drosophila be assessed automatically with high temporal resolution? For this purpose we introduce the automatic integrated tracking and odor-delivery system Flywalk. In fifteen aligned small wind tunnels individual flies are exposed to repeated odor pulses, well defined in concentration and timing. The flies' positions are visually tracked, which allows quantification of the odor-evoked walking behavior with high temporal resolution of up to 100 ms. As a demonstration of Flywalk we show that the flies' behavior is odorant-specific; attractive odors elicit directed upwind movements, while repellent odors evoke decreased activity, followed by downwind movements. These changes in behavior differ between sexes. Furthermore our findings show that flies can evaluate the sex of a conspecific and males can determine a female’s mating status based on olfactory cues. Consequently, Flywalk allows automatic screening of individual flies for their olfactory preference and sensitivity.

Concepts: Male, Female, Sex, Olfaction, Odor, Olfactory fatigue, Electronic nose, Olfactometer

98

It is commonly believed that humans have a poor sense of smell compared to other mammalian species. However, this idea derives not from empirical studies of human olfaction but from a famous 19th-century anatomist’s hypothesis that the evolution of human free will required a reduction in the proportional size of the brain’s olfactory bulb. The human olfactory bulb is actually quite large in absolute terms and contains a similar number of neurons to that of other mammals. Moreover, humans have excellent olfactory abilities. We can detect and discriminate an extraordinary range of odors, we are more sensitive than rodents and dogs for some odors, we are capable of tracking odor trails, and our behavioral and affective states are influenced by our sense of smell.

Concepts: Brain, Hippocampus, Mammal, Olfaction, Primate, Odor, Olfactory fatigue, Electronic nose

55

Social factors play a critical role in a panoply of health processes, including, as recently demonstrated, olfaction. Here, we investigated sex-dependent differences in the relationship between social lives and ability to identify odors in a large sample of nationally representative older US adults (n = 3005, National Social Life and Aging Project (NSHAP)). Social life was measured by the number of friends and close relatives as well as frequency of socializing. We here confirm the association between social lives and olfactory function and extend the notion by showing specifically that olfactory identification ability is modulated by sex in older adults. The connection between olfactory performance and social lives could reflect social modulation of aging as has been reported for health in general. Future studies are necessary to elucidate the precise mechanisms underlying this association and sex difference.

Concepts: Biology, Sociology, Differences, Olfaction, Odor, Olfactory fatigue, Electronic nose, Olfactometer

51

The scent of another person can activate memories, trigger emotions, and spark romantic attraction; however, almost nothing is known about whether and how human scents influence responses to stress. In the current study, 96 women were randomly assigned to smell one of three scents (their romantic partner’s, a stranger’s, or a neutral scent) and exposed to an acute stressor (Trier Social Stress Test). Perceived stress and cortisol were measured continuously throughout the study (5 and 7 times, respectively). Perceived stress was reduced in women who were exposed to their partner’s scent. This reduction was observed during stress anticipation and stress recovery. Cortisol levels were elevated in women who were exposed to a stranger’s scent. This elevation was observed throughout stress anticipation, peak stress, and stress recovery. The current work speaks to the critical role of human olfactory cues in social communication and reveals that social scents can impact both psychological and physiological reactions to stress. (PsycINFO Database Record

Concepts: Psychology, Cognition, Olfaction, Odor, Olfactory fatigue, Electronic nose, Olfactometer, Smell

35

Olfaction is an important sensory modality driving fundamental behaviors. During odor-dependent learning, a positive value is commonly assigned to an odorant, and multiple forms of plasticity are involved when such odor-reward associations are formed. In rodents, one of the mechanisms underlying plasticity in the olfactory bulb consists in recruiting new neurons daily throughout life. However, it is still unknown whether adult-born neurons might participate in encoding odor value. Here, we demonstrate that exposure to reward-associated odors specifically increases activity of adult-born neurons but not preexisting neurons. Remarkably, adult-born neuron activation during rewarded odor presentation heightens discrimination learning and enhances the ability to update the odor value during reversal association. Moreover, in some cases, activation of this interneuron population can trigger olfactory learning without sensory stimulation. Taken together, our results show a specific involvement of adult-born neurons in facilitating odor-reward association during adaptive learning.

Concepts: Brain, Action potential, Olfactory bulb, Olfaction, Odor, Olfactory fatigue, Electronic nose, Olfactometer

34

Human scent identification is based on a matching-to-sample task in which trained dogs are required to compare a scent sample collected from an object found at a crime scene to that of a suspect. Based on dogs' greater olfactory ability to detect and process odours, this method has been used in forensic investigations to identify the odour of a suspect at a crime scene. The excellent reliability and reproducibility of the method largely depend on rigor in dog training. The present study describes the various steps of training that lead to high sensitivity scores, with dogs matching samples with 90% efficiency when the complexity of the scents presented during the task in the sample is similar to that presented in the in lineups, and specificity reaching a ceiling, with no false alarms in human scent matching-to-sample tasks. This high level of accuracy ensures reliable results in judicial human scent identification tests. Also, our data should convince law enforcement authorities to use these results as official forensic evidence when dogs are trained appropriately.

Concepts: Olfaction, Odor, Olfactory fatigue, Electronic nose, Olfactometer

32

Alexithymia is a psychological construct characterized by deficits in processing emotional stimuli. However, little is known about the processing of odours in alexithymia, even though there is extensive proof that emotion and olfaction are closely linked. The present study is aimed at investigating how alexithymic individuals process emotions conveyed by odors. Emotional responses to unpleasant, neutral odors and clean air were collected through self-report ratings and psychophysiological measures in a sample of 62 healthy participants with high (HA), medium (MA) and low (LA) levels of alexithymia. Moreover, participants performed tests on odors identification and threshold and completed questionnaires assessing olfactory imagery and awareness. Two main results have been found: first, HA and MA groups showed altered physiological responses to odors, compared to LA, while no differences among the groups were observed in odor ratings; and second, affective and cognitive alexithymia components were differently associated with the performance on olfactory tests, skin conductance response to odors, reaction times in the rating task, and scores on olfactory questionnaires. We conclude that alexithymia is characterized by altered physiological reactions to olfactory stimuli; moreover, we stress the importance of evaluating the different alexithymia components since they affect emotional stimuli processing in different ways.

Concepts: Psychology, Affect, Olfaction, Odor, Emotion, Olfactory fatigue, Electronic nose, Olfactometer

32

Patients with olfactory dysfunction benefit from repeated exposure to odors, so-called olfactory training (OT). This does not mean occasional smelling but the structured sniffing of a defined set of odors, twice daily, for a period of 4 months or longer. In this prospective study, we investigated whether the effect of OT might increase through the use of more odors and extension of the training period.

Concepts: Extensional definition, Olfaction, Odor, Ovulation, Olfactory fatigue, Electronic nose, Olfactometer, Intensional definition

31

Humans can identify visual objects independently of view angle and lighting, words independently of volume and pitch, and smells independently of concentration. The computational principles underlying invariant object recognition remain mostly unknown. Here we propose that, in olfaction, a small and relatively stable set comprised of the earliest activated receptors forms a code for concentration-invariant odor identity. One prediction of this “primacy coding” scheme is that decisions based on odor identity can be made solely using early odor-evoked neural activity. Using an optogenetic masking paradigm, we define the sensory integration time necessary for odor identification and demonstrate that animals can use information occurring <100 ms after inhalation onset to identify odors. Using multi-electrode array recordings of odor responses in the olfactory bulb, we find that concentration-invariant units respond earliest and at latencies that are within this behaviorally-defined time window. We propose a computational model demonstrating how such a code can be read by neural circuits of the olfactory system.

Concepts: Brain, Olfactory bulb, Olfactory receptor neuron, Olfaction, Olfactory nerve, Odor, Olfactory fatigue, Electronic nose