Discover the most talked about and latest scientific content & concepts.

Concept: E number


Western lifestyle and diet are major environmental factors playing a role in the development of IBD. Titanium dioxide (TiO2) nanoparticles are widely used as food additives or in pharmaceutical formulations and are consumed by millions of people on a daily basis. We investigated the effects of TiO2 in the development of colitis and the role of the nucleotide-binding oligomerisation domain receptor, pyrin domain containing (NLRP)3 inflammasome.

Concepts: Ultraviolet, Oxide, Titanium dioxide, E number, Titanium, Rutile, Paint, Titanium tetrachloride


It has been suggested that the use of nonnutritive sweeteners (NNSs) can lead to weight gain, but evidence regarding their real effect in body weight and satiety is still inconclusive. Using a rat model, the present study compares the effect of saccharin and aspartame to sucrose in body weight gain and in caloric intake. Twenty-nine male Wistar rats received plain yogurt sweetened with 20% sucrose, 0.3% sodium saccharin or 0.4% aspartame, in addition to chow and water ad libitum, while physical activity was restrained. Measurements of cumulative body weight gain, total caloric intake, caloric intake of chow and caloric intake of sweetened yogurt were performed weekly for 12weeks. Results showed that addition of either saccharin or aspartame to yogurt resulted in increased weight gain compared to addition of sucrose, however total caloric intake was similar among groups. In conclusion, greater weight gain was promoted by the use of saccharin or aspartame, compared with sucrose, and this weight gain was unrelated to caloric intake. We speculate that a decrease in energy expenditure or increase in fluid retention might be involved.

Concepts: Real number, E number, Aspartame, Sweeteners, Ad libitum, Sucralose, Saccharin, Equal


The present investigation was carried out to formulate and optimize the bioerodable insert of Azithromycin in order to prolong the release time and improve the ocular availability in ophthalmic infections. A modified solvent casting method was used for the preparation of azithromycin insert in which hydroxyl propyl methyl cellulose (HPMC) and Eudragit RL100 were used as drug reservoir and rate controlling membrane respectively. Thereafter the, formulations were evaluated for the uniformity of thickness and weight, surface pH, folding endurance, percentage moisture loss, percentage moisture absorption, drug content, in-vitro release, kinetics studies (zero order, first order, Higuchi and Korsmeyer - Peppas model) and stability studies. The Formulation H8 (amongst the range of H1-H10) ,comprising of 1.5% HPMC and 3% Eudragit RL100 ,was found to be optimized formulation on the basis of uniformity of thickness (0.26 ± 0.004 mm) and weight (24.9 ± 0.27 mg), surface pH (7.1 ± 0.063), folding endurance (18.3 ± 0.81), percentage moisture loss (7.49 ± 0.30%), percentage moisture absorption (5.7%), drug content (1.98 mg ), in-vitro release (99%) , stability studies (Shelf life- 346 days) and better ocular tolerability. The formulation H8 showed a steady and controlled release of the drug over a 12 hour period with non-Fickian diffusion release mechanism, compared to a normal release period of 2-3 hours. The optimized insert showed promising results and can be used to treat a wide range of ocular infections.

Concepts: Cellulose, E number, Methyl cellulose, Control, Hypromellose, Pharmaceutical formulation, Shelf life, Formulation


Our aim was to assess the effect of dietary elimination of monosodium glutamate (MSG) and aspartame on perceived pain in fibromyalgia. A total of 72 female patients with fibromyalgia were randomized to discontinuation of dietary MSG and aspartame (n = 36) or waiting list (n = 36). Patients were requested to rate their pain using a seven-point scale. Comparisons between both groups showed no significant differences on pain referred during the baseline or after the elimination of dietary MSG and aspartame. The discontinuation of dietary MSG and aspartame did not improve the symptoms of fibromyalgia.

Concepts: Amino acid, Glutamic acid, Excitotoxicity, E number, Monosodium glutamate, Umami, Flavour enhancer, Ajinomoto


Rheological properties of welan gum and xanthan gum solutions have been characterized systematically at various concentrations, temperatures and salinities. It is found that the viscoelasticity of welan gum is higher than that of xanthan gum at the same condition though the molecular weight of welan gum is lower. In view of this, welan gum will make a good performance in enhanced oil recovery, especially in high temperature and high salinity reservoirs. Network structure can be formed in solutions of welan gum and xanthan gum for the dynamic modulus has exponential relationship with the concentration. Moreover, the molecular aggregates of welan gum adopt a different arrangement with that of xanthan gum, adjacent double helices of welan gum arrange in parallel as the zipper model. The structure formed by zipper model is still stable in high temperature and high salinity.

Concepts: Concentration, Chemical properties, Chemistry, Liquid, E number, Solution, Gums, Xanthan gum


The aim of this study was to develop novel anaerobic media using gellan gum for the isolation of previously uncultured rumen bacteria. Four anaerobic media, a basal liquid medium (BM) with agar (A-BM), a modified BM (MBM) with agar (A-MBM), an MBM with phytagel (P-MBM) and an MBM with gelrite (G-MBM) were used for the isolation of rumen bacteria and evaluated for the growth of previously uncultured rumen bacteria. Of the 214 isolates composed of 144 OTUs, 103 isolates (83 OTUs) were previously uncultured rumen bacteria. Most of the previously uncultured strains were obtained from A-MBM, G-MBM and P-MBM, but the predominant cultural members, isolated from each medium, differed. A-MBM and G-MBM showed significantly higher numbers of different OTUs derived from isolates than A-BM (P < 0·05). The Shannon index indicated that the isolates of A-MBM showed the highest diversity (H' = 3·89) compared with those of G-MBM, P-MBM and A-BM (H' = 3·59, 3·23 and 3·39, respectively). Although previously uncultured rumen bacteria were isolated from all media used, the ratio of previously uncultured bacteria to total isolates was increased in A-MBM, P-MBM and G-MBM.

Concepts: Ratio, Agar, E number, Diversity index, Shannon index, Gellan gum, Sphingomonas


The importance of probiotics and their live delivery in the gastrointestinal tract has gained much importance in the recent past. Many reports have indicated that there is poor viability of probiotic bacteria in dairy based products, both fermented and non-fermented, and also in the human gastro-intestinal system is questionable. In this case, microencapsulation is the most significant emerging and efficient technology that is being used for the preservation of probiotics against adverse environmental conditions. Apart from different techniques of microencapsulation, various types of encapsulating materials are also used for the process, namely, alginate, chitosan, carrageenan, gums (locust bean, gellan gum, xanthan gum, etc.), gelatin, whey protein, starch, and compression coating. Each one of the encapsulating materials has its own unique characteristics of capsule formation and provision of shape, appearance, and strength to microbeads. The type of encapsulating material also influences the viability of probiotics during storage, processing, and in the gastrointestinal tract. The effectiveness of any material depends not upon its capsule forming capability, strength, and enhancing viability but also on its cheapness, availability, and biocompatibility. So, added convenience and reduced packaging costs may also be used to offset the cost of encapsulating one or more ingredients. Encapsulated forms of ingredients provide a longer shelf life for the product.

Concepts: Digestive system, Milk, Polysaccharide, E number, Digestion, Gums, Polysaccharides, Edible thickening agents


The objective of the present research was to ensure safety during oral administration of medications to dysphagia patients, by preparing fast disintegrating films (FDF) containing anastrozole (ANS) which disintegrate rapidly when placed on the tongue. Films were prepared by solvent-casting method using various polymers such as hydroxyl propyl methyl cellulose (HPMC E5 LV), hydroxy propyl cellulose (HPC), poly vinyl alcohol (PVA) and sodium alginate (Na Alginate). Among the formulations examined, film prepared using HPMC E5 LV (F1) exhibited shorter disintegration time (15 sec) with satisfactory mechanical properties. Fourier transformer infrared (FTIR) & differential scanning calorimetry (DSC) analysis revealed no chemical incompatibility between drug and excipients used in the formulation. Surface morphology revealed even distribution of ANS in the film. Dissolution of drug from F1 formulation was rapid with more than 90% drug release in 240 sec. Pharmacokinetic parameters showed no statistical difference between F1 (test) and drug solution (control) indicating comparable plasma level-time profiles. The film showed an excellent stability for 24 weeks when stored at refrigerated temperature (2-8°C). These findings suggest that the fast disintegrating film as a promising candidate for delivery of ANS in dysphagic patients.

Concepts: Pharmacology, Polymer, Cell wall, Functional groups, Differential scanning calorimetry, E number, Excipients, Disintegration


In vitro genotoxic effects of antioxidant additives, such as citric acid (CA) and phosphoric acid (PA) and their combination, as well as antimicrobial additives, such as benzoic acid (BA) and calcium propionate (CP), on human lymphocytes were determined using alkaline single-cell gel electrophoresis. There was a significant increase in the DNA damage in human lymphocytes after 1 h of in vitro exposure to CA, PA, BA and CP (200, 25-200, 50-500, 50-1000 μg/mL, respectively). The combination of CA and PA significantly increased the mean tail intensity at all the concentrations used (25-200 μg/mL) and significantly increased the mean tail length mainly after higher concentrations (100 and 200 μg/mL). Data in this study showed that the concentrations of food additives used induce DNA damage and PA was the most genotoxic and CA was less genotoxic additives among them.

Concepts: Protein, Acid, Carboxylic acid, Citric acid, E number, Vinegar, Food additive, Preservative


Amaranth (E123) and Allura red (E129), very important food azo dyes used in food, drug, paper, cosmetic and textile industries, were assessed for their genotoxic potential through comet assay in yeast cells. Comet assay was standardized by with different concentration of H(2)O(2). Concentrations of Amaranth and Allura red were maintained in sorbitol buffer starting from 9.76 to 5,000 μg/mL and 1 × 10(4) cells were incubated at two different incubation temperatures 28 and 37°C. Amaranth (E123) and Allura red (E129) were found to exhibit their genotoxic effect directly in Saccharomyces cerevisiae. No significant genotoxic activity was observed for Amaranth and Allura red at 28°C but at 37°C direct relation of Amaranth concentration with comet tail was significant and no positive relation was seen with time exposure factor. At 37°C the minimum concentration of Amaranth and Allura red at which significant DNA damage observed through comet assay was 1,250 μg/mL in 2nd h post exposure time. The results indicated that food colors should be carefully used in baking products as heavy concentration of food colors could affect the fermentation process of baking.

Concepts: Yeast, Saccharomyces cerevisiae, Brewing, Dye, E number, Azo dyes, Allura Red AC, Food coloring