Discover the most talked about and latest scientific content & concepts.

Concept: Deltamethrin


Thickening of the integument as a mechanism of resistance to insecticides is a well recognised phenomenon in the insect world and, in recent times, has been found in insects exhibiting pyrethroid-resistance. Resistance to pyrethroid insecticides in the common bed bug, Cimex lectularius L., is widespread and has been frequently inferred as a reason for the pest’s resurgence. Overexpression of cuticle depositing proteins has been demonstrated in pyrethroid-resistant bed bugs although, to date, no morphological analysis of the cuticle has been undertaken in order to confirm a phenotypic link. This paper describes examination of the cuticle thickness of a highly pyrethroid-resistant field strain collected in Sydney, Australia, in response to time-to-knockdown upon forced exposure to a pyrethroid insecticide. Mean cuticle thickness was positively correlated to time-to-knockdown, with significant differences observed between bugs knocked-down at 2 hours, 4 hours, and those still unaffected at 24 hours. Further analysis also demonstrated that the 24 hours survivors possessed a statistically significantly thicker cuticle when compared to a pyrethroid-susceptible strain of C. lectularius. This study demonstrates that cuticle thickening is present within a pyrethroid-resistant strain of C. lectularius and that, even within a stable resistant strain, cuticle thickness will vary according to time-to-knockdown upon exposure to an insecticide. This response should thus be considered in future studies on the cuticle of insecticide-resistant bed bugs and, potentially, other insects.

Concepts: Hemiptera, Pyrethroid, Deltamethrin, Bedbug, Heteroptera, Cimex lectularius, Cimex, Masked hunter


Pyrethroid resistance in African vector mosquitoes is a threat to malaria control. Resistant mosquitoes can survive insecticide doses that would normally be lethal. We studied effects of such doses on Plasmodium falciparum development inside kdr-resistant Anopheles gambiae s.s. in Uganda.

Concepts: Malaria, Plasmodium falciparum, Plasmodium, Plasmodium vivax, Anopheles, Mosquito, DDT, Deltamethrin


Recent advances in genomic and post-genomic technologies have facilitated a genome-wide analysis of the insecticide resistance-associated genes in insects. Through bed bug, Cimex lectularius transcriptome analysis, we identified 14 molecular markers associated with pyrethroid resistance. Our studies revealed that most of the resistance-associated genes functioning in diverse mechanisms are expressed in the epidermal layer of the integument, which could prevent or slow down the toxin from reaching the target sites on nerve cells, where an additional layer of resistance (kdr) is possible. This strategy evolved in bed bugs is based on their unique morphological, physiological and behavioral characteristics and has not been reported in any other insect species. RNA interference-aided knockdown of resistance associated genes showed the relative contribution of each mechanism towards overall resistance development. Understanding the complexity of adaptive strategies employed by bed bugs will help in designing the most effective and sustainable bed bug control methods.

Concepts: Genome, Insect, Hemiptera, Insecticide, Deltamethrin, Bedbug, Cimex lectularius, Cimex


Bedbug (Cimex lectularis) infestation is becoming a worldwide epidemic due to the emergence of insecticide-resistant strains. Pyrethroids are approved by the US Environmental Protection Agency for use against bedbugs and are considered minimally toxic to humans, with known respiratory, neurologic, and gastrointestinal effects. We present the first reported case of pyrethroid-induced toxic acute tubular necrosis (ATN). A 66-year-old healthy woman receiving no prior nephrotoxic medications presented with extreme weakness, decreased urine output, and acute kidney injury. She had administered multiple applications of a bedbug spray (permethrin) and a fogger (pyrethrin), exceeding the manufacturer’s recommended amounts. She was found to have severe nonoliguric acute kidney injury associated with profound hypokalemia. Kidney biopsy revealed toxic ATN with extensive tubular degenerative changes and cytoplasmic vacuolization. With conservative management, serum creatinine level decreased from 13.0 mg/dL (estimated glomerular filtration rate, 3 mL/min/1.73 m(2)) to 1.67 mg/dL (estimated glomerular filtration rate, 37 mL/min/1.73 m(2)) within 6 weeks. Literature review uncovered no prior report of pyrethroid insecticide-induced ATN in humans, although there are reports of ATN with similar tubular vacuolization in rats exposed to this agent. Bedbug insecticides containing pyrethroids should be used with caution due to the potential development of toxic ATN after prolonged exposure.

Concepts: Renal failure, Nephrology, Renal physiology, Blood urea nitrogen, Pyrethroid, Deltamethrin, Bedbug, Cimex lectularius


Bed bugs (both Cimex hemipterus [F.] and Cimex lectularius L.) worldwide are highly resistant to the pyrethroids. An important resistance mechanism known as ‘knockdown resistance’ (kdr) is caused by genetic point mutations on the voltage-gated sodium channel (VGSC) gene. Previous studies have identified two point mutations (V419L and L925I) on the VGSC gene in C. lectularius that are responsible for kdr-type resistance. However, the kdr mutations in C. hemipterus have not been investigated.

Concepts: Hemiptera, Deltamethrin, Bedbug, Heteroptera, Cimex lectularius, Cimex, Masked hunter


Pyrethroid resistance in the Common bed bug, Cimex lectularius L. has been reported worldwide. An important resistant mechanism is via knockdown resistance (kdr) mutations, notably V419L and L925I. Information regarding this kdr-type resistant mechanism is unknown in Australia. This study aims to examine the status of kdr mutations in Australian C. lectularius strains.

Concepts: Hemiptera, Deltamethrin, Bedbug, Heteroptera, Cimex lectularius, Cimex, Masked hunter


The rapid increase of bed bug populations resistant to pyrethroids demands the development of novel control tactics. Products combining pyrethroids and neonicotinoids have become very popular for bed bug control in the United States, but there are concerns about evolution of resistance to these compounds. Laboratory assays were used to measure the toxicity of topical applications of four neonicotinoids to a susceptible population and three pyrethroid-resistant populations. Activity of esterases, glutathione S-transferases, and cytochrome P450s of all strains was also evaluated. High levels of resistance to four neonicotinoids, acetamiprid, imidacloprid, dinotefuran, and thiamethoxam, relative to the susceptible Fort Dix population, were detected in populations collected from human dwellings in Cincinnati and Michigan. Because activity of detoxifying enzymes was increased in these two populations, our results suggest that these enzymes have some involvement in neonicotinoid resistance, but other resistance mechanisms might be involved as well. Detection of high levels of resistance to neonicotinoids further limits the options for chemical control of bed bugs.

Concepts: Hemiptera, Insecticide, Deltamethrin, Bedbug, Heteroptera, Cimex lectularius, Cimex, Masked hunter


Plague is a rodent disease transmissible to humans by infected flea bites, and Madagascar is one of the countries with the highest plague incidence in the world. This study reports the susceptibility of the main plague vector Xenopsylla cheopis to 12 different insecticides belonging to 4 insecticide families (carbamates, organophosphates, pyrethroids and organochlorines). Eight populations from different geographical regions of Madagascar previously resistant to deltamethrin were tested with a World Health Organization standard bioassay. Insecticide susceptibility varied amongst populations, but all of them were resistant to six insecticides belonging to pyrethroid and carbamate insecticides (alphacypermethrin, lambdacyhalothrin, etofenprox, deltamethrin, bendiocarb and propoxur). Only one insecticide (dieldrin) was an efficient pulicide for all flea populations. Cross resistances were suspected. This study proposes at least three alternative insecticides (malathion, fenitrothion and cyfluthrin) to replace deltamethrin during plague epidemic responses, but the most efficient insecticide may be different for each population studied. We highlight the importance of continuous insecticide susceptibility surveillance in the areas of high plague risk in Madagascar.

Concepts: Epidemiology, Flea, Insecticide, DDT, Pyrethroid, Deltamethrin, Carbamate, Malathion


Insecticide resistance poses a significant and increasing threat to the control of malaria and other mosquito-borne diseases. We present a novel method of insecticide application based on netting treated with an electrostatic coating that binds insecticidal particles through polarity. Electrostatic netting can hold small amounts of insecticides effectively and results in enhanced bioavailability upon contact by the insect. Six pyrethroid-resistant Anopheles mosquito strains from across Africa were exposed to similar concentrations of deltamethrin on electrostatic netting or a standard long-lasting deltamethrin-coated bednet (PermaNet 2.0). Standard WHO exposure bioassays showed that electrostatic netting induced significantly higher mortality rates than the PermaNet, thereby effectively breaking mosquito resistance. Electrostatic netting also induced high mortality in resistant mosquito strains when a 15-fold lower dose of deltamethrin was applied and when the exposure time was reduced to only 5 s. Because different types of particles adhere to electrostatic netting, it is also possible to apply nonpyrethroid insecticides. Three insecticide classes were effective against strains of Aedes and Culex mosquitoes, demonstrating that electrostatic netting can be used to deploy a wide range of active insecticides against all major groups of disease-transmitting mosquitoes. Promising applications include the use of electrostatic coating on walls or eave curtains and in trapping/contamination devices. We conclude that application of electrostatically adhered particles boosts the efficacy of WHO-recommended insecticides even against resistant mosquitoes. This innovative technique has potential to support the use of unconventional insecticide classes or combinations thereof, potentially offering a significant step forward in managing insecticide resistance in vector-control operations.

Concepts: Malaria, Insect, Anopheles, Mosquito, Pesticide, Insecticide, DDT, Deltamethrin


Although indoor residual spraying (IRS) is an effective tool for malaria control, its use contributes to high insecticide exposure in sprayed communities and raises concerns about possible unintended health effects.

Concepts: Clinical trial, Malaria, Pesticide, DDT, Deltamethrin, Pesticides