SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Damselfly

164

BACKGROUND: Wing size and shape have important aerodynamic implications on flight performance. We explored how wing size was related to wing shape in territorial males of 37 taxa of the damselfly family Calopterygidae. Wing coloration was also included in the analyses because it is sexually and naturally selected and has been shown to be related to wing shape. We studied wing shape using both the non-dimensional radius of the second moment of wing area (RSM) and geometric morphometrics. Lower values of the RSM result in less energetically demanding flight and wider ranges of flight speed. We also re-analyzed previously published data on other damselflies and dragonflies. RESULTS: The RSM showed a hump-shaped relationship with wing size. However, after correcting for phylogeny using independent contrast, this pattern changed to a negative linear relationship. The basal genus of the study family, Hetaerina, was mainly driving that change. The obtained patterns were specific for the study family and differed from other damselflies and dragonflies. The relationship between the RSM and wing shape measured by geometric morphometrics was linear, but relatively small changes along the RSM axis can result in large changes in wing shape. Our results also showed that wing coloration may have some effect on RSM. CONCLUSIONS: We found that RSM showed a complex relationship with size in calopterygid damselflies, probably as a result of other selection pressures besides wing size per se. Wing coloration and specific behavior (e.g. courtship) are potential candidates for explaining the complexity. Univariate measures of wing shape such as RSM are more intuitive but lack the high resolution of other multivariate techniques such as geometric morphometrics. We suggest that the relationship between wing shape and size are taxa-specific and differ among closely-related insect groups.

Concepts: Aerodynamics, Change, Moment, Wing, Odonata, Dragonfly, Damselfly, Damselflies

17

Hydrophylita emporos n. sp. reared from eggs of Psolodesmus mandarinus mandarinus McLachlan (Zygoptera: Calopterygidae) in Taiwan is described. This is the first species of Hydrophylita to be described from the Old World, and the first record of phoresy in the genus. Adult females were observed aggregating at the base of the female damselfly’s abdomen. When the damselfly begins ovipositing, females move to the tip of the abdomen, enter the water and quickly locate eggs for parasitising. The article contains links to video footage of this process.

Concepts: Female, Biology, Ant, Adult, The Tip, Damselfly, Damselflies, Calopterygidae

3

The recently completed Odonata database for California consists of specimen records from the major entomology collections of the state, large Odonata collections outside of the state, previous literature, historical and recent field surveys, and from enthusiast group observations. The database includes 32,025 total records and 19,000 unique records for 106 species of dragonflies and damselflies, with records spanning 1879-2013. Records have been geographically referenced using the point-radius method to assign coordinates and an uncertainty radius to specimen locations. In addition to describing techniques used in data acquisition, georeferencing, and quality control, we present assessments of the temporal, spatial, and taxonomic distribution of records. We use this information to identify biases in the data, and to determine changes in species prevalence, latitudinal ranges, and elevation ranges when comparing records before 1976 and after 1979. The average latitude of where records occurred increased by 78 km over these time periods. While average elevation did not change significantly, the average minimum elevation across species declined by 108 m. Odonata distribution may be generally shifting northwards as temperature warms and to lower minimum elevations in response to increased summer water availability in low-elevation agricultural regions. The unexpected decline in elevation may also be partially the result of bias in recent collections towards centers of human population, which tend to occur at lower elevations. This study emphasizes the need to address temporal, spatial, and taxonomic biases in museum and observational records in order to produce reliable conclusions from such data.

Concepts: Scientific method, Biology, Elevation, Geodesy, Odonata, Dragonfly, Damselfly

2

Wing pigmentation is a trait that predicts the outcome of male contests in some damselflies. Thus, it is reasonable to suppose that males would have the ability to assess wing pigmentation and adjust investment in a fight according to the costs that the rival may potentially impose. Males of the damselfly Mnesarete pudica exhibit red-coloured wings and complex courtship behaviour and engage in striking male-male fights. In this study, we investigated male assessment behaviour during aerial contests. Theory suggests that the relationship between male resource-holding potential (RHP) and contest duration describes the kind of assessment adopted by males: self-assessment, opponent-only assessment or mutual assessment. A recent theory also suggests that weak and strong males exhibit variations in the assessment strategies adopted. We estimated male RHP through male body size and wing colouration (i.e. pigmentation, wing reflectance spectra and transmission spectra) and studied the relationship between male RHP and contest duration from video-documented behavioural observations of naturally occurring individual contests in the field. The results showed that males with more opaque wings and larger red spots were more likely to win contests. The relationships between RHP and contest durations partly supported the self-assessment and the mutual assessment models. We then experimentally augmented the pigmented area of the wings, in order to evaluate whether strong and weak males assess rivals' RHP through wing pigmentation. Our experimental manipulation, however, clearly demonstrated that strong males assess rivals' wing pigmentation. We finally suggest that there is a variation in the assessment strategy adopted by males.

Concepts: Odonata, Damselfly, Damselflies, Calopterygidae

1

The potential of DNA barcoding approaches to identify single species and characterize species compositions strongly depends on the marker choice. The prominent “Folmer region”, a 648 basepair fragment at the 5' end of the mitochondrial CO1 gene, has been traditionally applied as a universal DNA barcoding region for metazoans. In order to find a suitable marker for biomonitoring odonates (dragonflies and damselflies), we here explore a new region of the CO1 gene (CO1B) for DNA barcoding in 51 populations of 23 dragonfly and damselfly species. We compare the “Folmer region”, the mitochondrial ND1 gene (NADH dehydrogenase 1) and the new CO1 region with regard to (i) speed and reproducibility of sequence generation, (ii) levels of homoplasy and (iii) numbers of diagnostic characters for discriminating closely related sister taxa and populations. The performances of the gene regions regarding these criteria were quite different. Both, the amplification of CO1B and ND1 was highly reproducible and CO1B showed the highest potential for discriminating sister taxa at different taxonomic levels. In contrast, the amplification of the “Folmer region” using the universal primers was difficult and the third codon positions of this fragment have experienced nucleotide substitution saturation. Most important, exploring this new barcode region of the CO1 gene identified a higher discriminating power between closely related sister taxa. Together with the design of layered barcode approaches adapted to the specific taxonomic “environment”, this new marker will further enhance the discrimination power at the species level.

Concepts: DNA, Gene, RNA, Species, Taxonomic rank, Odonata, Dragonfly, Damselfly

1

The enemy release hypothesis (ERH) predicts that the spread of (invasive) species will be facilitated by release from their enemies as they occupy new areas. However, the ERH is rarely tested on native (non-invasive, long established) species with expanding or shifting ranges. I tested the ERH for a native damselfly (Enallagma clausum) whose range has recently expanded in western Canada, with respect to its water mite and gregarine parasites. Parasitism levels (prevalence and intensity) were also compared between E. clausum and a closely related species, Enallagma boreale, which has long been established in the study region and whose range is not shifting. A total of 1,150 damselflies were collected at three ‘old’ sites for E. clausum in Saskatchewan, and three ‘new’ sites in Alberta. A little more than a quarter of the damselflies collected were parasitized with, on average, 18 water mite individuals, and 20% were parasitized by, on average, 10 gregarine individuals. I assessed whether the differences between levels of infection (prevalence and intensity) were due to site type or host species. The ERH was not supported: Enallagma clausum has higher or the same levels of parasitism in new sites than old sites. However, E. boreale seems to be benefitting from the recent range expansion of a native, closely related species through ecological release from its parasites because the parasites may be choosing to infest the novel, potentially naïve, host instead of the well-established host.

Concepts: Insect, Parasitism, Ant, Invasive, Range, Commensalism, Odonata, Damselfly

0

Coeliccia erici Laidlaw, 1917 is re-described and illustrated for both sexes; its taxonomic history and the confusion surrounding it is discussed. Coeliccia kimurai Asahina, 1990 is shown to be a junior synonym of C. erici. Coelicca sameerae sp. nov. (holotype ♂, small stream near Sungai Lasir, Tasik Kenyir, Terengganu, Malaysia, deposited in the Natural History Museum, London) is described from both sexes from Peninsular Malaysia; this species had been confused with C. erici until now. A remark on the status of Coeliccia simillima Laidlaw, 1917 is made.

Concepts: Nature, Entomology, Museum, Kelantan, Johor, Peninsular Malaysia, Chresonym, Damselfly

0

Adult dragonflies can be divided into two major groups, perchers and fliers, exhibiting notably different flight behaviour. Previous studies have yielded conflicting results regarding the link between the wing macro-morphology and flight style in these two groups. In this study, we present the first systematic investigation of the micro-morphological differences of wings of percher and flier dragonflies in four closely related species from the family Libellulidae. Our results suggest that the shape and material composition of wing microstructural components and, in particular, the nodus are adapted to facilitate the specific wing functioning in fliers and perchers. The findings further indicate a decreasing trend in the area proportion of the soft resilin-dominated cuticle in the nodus in the series of species from typical perchers to typical fliers. Such a reduction in the resilin proportion in the nodus of fliers is associated with an increase in the wing aspect ratio. The knot-shaped protrusion at the nodus of perchers, which becomes notably smaller in that of strong fliers, is likely to act as a mechanical stopper, avoiding large wing displacements. This study aims to develop a novel framework for future research on the relationship between wing morphology and flight behaviour in dragonflies.

Concepts: Arthropod, Ratio, Aspect ratio, Wing, Odonata, Dragonfly, Libellulidae, Damselfly

0

The larval antennal sensilla of two Zygoptera species, Calopteryx haemorroidalis (Calopterygidae) and Ischnura elegans (Coenagrionidae) are investigated with SEM and TEM. These two species have different antennae (geniculate, setaceous) and live in different environments (lotic, lentic waters). Notwithstanding this, similarities in the kind and distribution of sensilla are outlined: in both species the majority of sensilla types is located on the apical portion of the antenna, namely a composed coeloconic sensillum (possible chemoreceptor), two other coeloconic sensilla (possible thermo-hygroreceptors) and an apical seta (direct contact mechanoreceptor). Other mechanoreceptors such as filiform hairs sensitive to movements of the surrounding medium or bristles positioned to sense the movements of the flagellar segments are present on the antenna. Similarities in the antenna sensilla types and distribution are observed also with other dragonfly species, such as Onychogomphus forcipatus and Libellula depressa. A peculiar structure with an internal organization similar to that of a gland is observed in the apical antenna of C. haemorroidalis and I. elegans and it is present also in O. forcipatus and L. depressa. The possible function of this structure is at the moment unknown but it deserves further investigations owing to its widespread presence in Odonata larvae.

Concepts: Insect, Crustacean, Beetle, Odonata, Dragonfly, Damselfly, Damselflies, Broad-bodied Chaser

0

We evaluated the extent of intraspecific and interspecific genetic distances for two highly diverse infraorders of Odonata: Anisoptera and Zygoptera. All cytochrome c oxidase subunit I sequences (cox1), the region chosen for zoological DNA barcoding, present in GenBank for each infraorder were downloaded and curated. For Anisoptera, the final dataset consisted of 2,961 individual cox1 sequences for 536 species and the equivalent numbers for Zygoptera were 2,477 sequences for 497 species. More than 7 million individual genetic comparisons were made and the results indicated that there is a tendency towards a barcoding gap, but that the size of the gap may not be sufficient to robustly infer identities for some taxa. DNA barcoding may be of less use for some odonate taxa, perhaps pertaining to misidentifications in global databases. However, at local scales or with more confined taxonomical sampling, this tool may yet be beneficial in identifying these charismatic organisms.

Concepts: DNA, Gene, Biology, Species, Identification, Odonata, Dragonfly, Damselfly