Discover the most talked about and latest scientific content & concepts.

Concept: Damselflies


BACKGROUND: Wing size and shape have important aerodynamic implications on flight performance. We explored how wing size was related to wing shape in territorial males of 37 taxa of the damselfly family Calopterygidae. Wing coloration was also included in the analyses because it is sexually and naturally selected and has been shown to be related to wing shape. We studied wing shape using both the non-dimensional radius of the second moment of wing area (RSM) and geometric morphometrics. Lower values of the RSM result in less energetically demanding flight and wider ranges of flight speed. We also re-analyzed previously published data on other damselflies and dragonflies. RESULTS: The RSM showed a hump-shaped relationship with wing size. However, after correcting for phylogeny using independent contrast, this pattern changed to a negative linear relationship. The basal genus of the study family, Hetaerina, was mainly driving that change. The obtained patterns were specific for the study family and differed from other damselflies and dragonflies. The relationship between the RSM and wing shape measured by geometric morphometrics was linear, but relatively small changes along the RSM axis can result in large changes in wing shape. Our results also showed that wing coloration may have some effect on RSM. CONCLUSIONS: We found that RSM showed a complex relationship with size in calopterygid damselflies, probably as a result of other selection pressures besides wing size per se. Wing coloration and specific behavior (e.g. courtship) are potential candidates for explaining the complexity. Univariate measures of wing shape such as RSM are more intuitive but lack the high resolution of other multivariate techniques such as geometric morphometrics. We suggest that the relationship between wing shape and size are taxa-specific and differ among closely-related insect groups.

Concepts: Aerodynamics, Change, Moment, Wing, Odonata, Dragonfly, Damselfly, Damselflies


Hydrophylita emporos n. sp. reared from eggs of Psolodesmus mandarinus mandarinus McLachlan (Zygoptera: Calopterygidae) in Taiwan is described. This is the first species of Hydrophylita to be described from the Old World, and the first record of phoresy in the genus. Adult females were observed aggregating at the base of the female damselfly’s abdomen. When the damselfly begins ovipositing, females move to the tip of the abdomen, enter the water and quickly locate eggs for parasitising. The article contains links to video footage of this process.

Concepts: Female, Biology, Ant, Adult, The Tip, Damselfly, Damselflies, Calopterygidae


Resilin functions as an elastic spring that demonstrates extraordinary extensibility and elasticity. Here we use combined techniques, laser scanning confocal microscopy (LSCM) and scanning electron microscopy (SEM) to illuminate the structure and study the function of wing flexibility in damselflies, focusing on the genus Rhinocypha. Morphological studies using LSCM and SEM revealed that resilin patches and cuticular spikes were widespread along the longitudinal veins on both dorsal and ventral wing surfaces. Nanoindentation was performed by using atomic force microscopy (AFM), where the wing samples were divided into three sections (membrane of the wing, mobile and immobile joints). The resulting topographic images revealed the presence of various sizes of nanostructures for all sample sections. The elasticity range values were: membrane (0.04 to 0.16 GPa), mobile joint (1.1 to 2.0 GPa) and immobile joint (1.8 to 6.0 GPa). The elastomeric and glycine-rich biopolymer, resilin was shown to be an important protein responsible for the elasticity and wing flexibility.

Concepts: Electron, Electron microscope, Scientific techniques, Scanning tunneling microscope, Scanning electron microscope, Spring, Damselflies, Chlorocyphidae


Co-occurrence of closely related species can cause behavioral interference in mating and increase hybridization risk. Theoretically, this could lead to the evolution of more species-specific mate preferences and sexual signaling traits. Alternatively, females can learn to reject heterospecific males, to avoid male sexual interference from closely related species. Such learned mate discrimination could also affect conspecific mate preferences if females generalize from between species differences to prefer more species-specific mating signals. Female damselflies of the banded demoiselle (Calopteryx splendens) learn to reject heterospecific males of the beautiful demoiselle (C.virgo) through direct pre-mating interactions. These two species co-occur in a geographic mosaic of sympatric and microallopatric populations. Whereas C.virgo males have fully melanized wings, male C.splendens wings are partly melanized. We show that C.splendens females in sympatry with C.virgo prefer smaller male wing patches in conspecific males after learning to reject heterospecific males. In contrast, allopatric C.splendens females with experimentally induced experience with C.virgo males did not discriminate against larger male wing patches. Wing patch size might indicate conspecific male quality in allopatry. Co-occurrence with C.virgo therefore causes females to prefer conspecific male traits that are more species-specific, contributing to population divergence and geographic variation in female mate preferences. This article is protected by copyright. All rights reserved.

Concepts: Human, Male, Female, Gender, Sex, Speciation, Damselflies, Calopteryx


Wing pigmentation is a trait that predicts the outcome of male contests in some damselflies. Thus, it is reasonable to suppose that males would have the ability to assess wing pigmentation and adjust investment in a fight according to the costs that the rival may potentially impose. Males of the damselfly Mnesarete pudica exhibit red-coloured wings and complex courtship behaviour and engage in striking male-male fights. In this study, we investigated male assessment behaviour during aerial contests. Theory suggests that the relationship between male resource-holding potential (RHP) and contest duration describes the kind of assessment adopted by males: self-assessment, opponent-only assessment or mutual assessment. A recent theory also suggests that weak and strong males exhibit variations in the assessment strategies adopted. We estimated male RHP through male body size and wing colouration (i.e. pigmentation, wing reflectance spectra and transmission spectra) and studied the relationship between male RHP and contest duration from video-documented behavioural observations of naturally occurring individual contests in the field. The results showed that males with more opaque wings and larger red spots were more likely to win contests. The relationships between RHP and contest durations partly supported the self-assessment and the mutual assessment models. We then experimentally augmented the pigmented area of the wings, in order to evaluate whether strong and weak males assess rivals' RHP through wing pigmentation. Our experimental manipulation, however, clearly demonstrated that strong males assess rivals' wing pigmentation. We finally suggest that there is a variation in the assessment strategy adopted by males.

Concepts: Odonata, Damselfly, Damselflies, Calopterygidae


The larval antennal sensilla of two Zygoptera species, Calopteryx haemorroidalis (Calopterygidae) and Ischnura elegans (Coenagrionidae) are investigated with SEM and TEM. These two species have different antennae (geniculate, setaceous) and live in different environments (lotic, lentic waters). Notwithstanding this, similarities in the kind and distribution of sensilla are outlined: in both species the majority of sensilla types is located on the apical portion of the antenna, namely a composed coeloconic sensillum (possible chemoreceptor), two other coeloconic sensilla (possible thermo-hygroreceptors) and an apical seta (direct contact mechanoreceptor). Other mechanoreceptors such as filiform hairs sensitive to movements of the surrounding medium or bristles positioned to sense the movements of the flagellar segments are present on the antenna. Similarities in the antenna sensilla types and distribution are observed also with other dragonfly species, such as Onychogomphus forcipatus and Libellula depressa. A peculiar structure with an internal organization similar to that of a gland is observed in the apical antenna of C. haemorroidalis and I. elegans and it is present also in O. forcipatus and L. depressa. The possible function of this structure is at the moment unknown but it deserves further investigations owing to its widespread presence in Odonata larvae.

Concepts: Insect, Crustacean, Beetle, Odonata, Dragonfly, Damselfly, Damselflies, Broad-bodied Chaser


In this study the damselfly Ischnura senegalensis (Rambur, 1842) was first found to produce strong photoluminescence (PL) emissions from various colored-body portions, such as the eighth abdominal segment of the tail. The colors of the colored-body portions can be enhanced or modified by the PL emissions for assistance in reducing intrasexual and male harassment, and improving mature mating and conspecific identity. Therefore, the PL emissions that contribute to the color modification and coloration are involved in the cuticle evolution of the damselflies. The micro-PL confocal images verify that the PL emissions can strongly influence the surface colors of the cuticle, and demonstrate why the damselfly Ischnura senegalensis is called a bluetail.

Concepts: Arthropod, Color, Hue, Animal anatomy, Color theory, Color wheel, Damselflies, Ischnura heterosticta


Odonata are usually regarded as one of the most ancient extant lineages of winged insects. Their copulatory apparatus and mating behavior are unique among insects. Male damselflies use their caudal appendages to clasp the female’s prothorax during both copulation and egg-laying and have a secondary copulatory apparatus for sperm transfer. Knowledge of the functional morphology of the male caudal appendages is the basis for understanding the evolution of these structures in Odonata and respective organs in other insects. However, it is still not exactly known how the zygopteran claspers work. In this study, we applied micro-computed tomography and a variety of microscopy techniques to examine the morphology, surface microstructure, cuticle material composition and muscle topography of the male caudal appendages of Ischnura elegans. The results indicate that the closing of the paraproctal claspers is mainly passive. This indirect closing mechanism is very likely supported by high proportions of the elastic protein resilin present in the cuticle of the paraproctal bases. In addition, the prothoracic morphology of the female plays an important role in the indirect closing of the male claspers. Our data indicate that both structures - the male claspers and the female prothoracic hump - function together like a snap-fastener.

Concepts: Reproduction, Insect, Sex, Mating, Odonata, Dragonfly, Damselfly, Damselflies


Geographical patterns in body size have been described across a wide range of species, leading to the development of a series of fundamental biological rules. However, shape variables are less well-described despite having substantial consequences for organism performance. Wing aspect ratio (AR) has been proposed as a key shape parameter that determines function in flying animals, with high AR corresponding to longer, thinner wings that promote high manoeuvrability, low speed flight, and low AR corresponding to shorter, broader wings that promote high efficiency long distance flight. From this principle it might be predicted that populations living in cooler areas would exhibit low AR wings to compensate for reduced muscle efficiency at lower temperatures. I test this hypothesis using the riverine damselfly, Calopteryx maculata, sampled from 34 sites across its range margin in North America. Nine hundred and seven male specimens were captured from across the 34 sites (mean = 26.7 ± 2.9 SE per site), dissected and measured to quantify the area and length of all four wings. Geometric morphometrics were employed to investigate geographical variation in wing shape. The majority of variation in wing shape involved changes in wing aspect ratio, confirmed independently by geometric morphometrics and wing measurements. There was a strong negative relationship between wing aspect ratio and the maximum temperature of the warmest month which varies from west-east in North America, creating a positive relationship with longitude. This pattern suggests that higher aspect ratio may be associated with areas in which greater flight efficiency is required: regions of lower temperatures during the flight season. I discuss my findings in light of research of the functional ecology of wing shape across vertebrate and invertebrate taxa.

Concepts: Biology, Aspect ratio, North America, Wing, Aircraft, Odonata, Damselfly, Damselflies


Wing shape is related to flight performance, which is expected to be under selection for improving flight behaviours such as predator avoidance. Moreover, wing conspicuousness, usually involved in sexual selection processes, is also relevant in terms of predation risk. In this study, we examined how predation by a passerine bird, the white wagtail Motacilla alba, selects wing shape and wing colour patch size in males of the banded demoiselle Calopteryx splendens. The wing colour patch is intra- and intersexually selected in the study species. In a field study, we compared wings of live damselflies to wings of predated damselflies which are always discarded after predation. Based on aerodynamic theory and a previous study on wing shape of territorial tactics in damselflies, we predicted an overall short and broad wing, with a concave front margin shape to be selected by predation. This shape would be expected to improve escaping ability. Moreover, we predicted that wing patch size should be negatively selected by predation. We found that selection operated differently on fore- and hindwings. In contrast to our predictions, predation favoured a slender general forewing shape. However, the predicted wing shape was favoured in hindwings. We also found selection favouring a narrower wing colour patch. Our results suggest different roles of fore- and hindwings in flight, as previously suggested for Calopteryx damselflies and shown for butterflies and moths. Forewings would be more involved in sustained flight and hindwings in flight manoeuvrability. Our results differ somehow from a recently published work in the same study system, but using another population, suggesting that selection can fluctuate across space, despite the simplicity of this predator-prey system. This article is protected by copyright. All rights reserved.

Concepts: Predation, Bird, Wing, Damselflies, Calopteryx, White Wagtail, Wagtail, Motacilla