SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Control system

164

The main objective of this paper is to investigate the effects of routing protocols on wireless sensor and actuator networks (WSANs), focusing on the control system response and the energy consumption of nodes in a network. We demonstrate that routing algorithms designed without considering the relationship between communication and control cannot be appropriately used in wireless networked control applications. For this purpose, an ad-hoc on-demand distance vector (AODV) routing, an IEEE 802.15.4, and a building-temperature control system are employed for this exploration. The findings from our scenarios show that the AODV routing can select a path with a high traffic load for data transmission. It takes a long time before deciding to change a new route although it experiences the unsuccessful transmission of packets. As a result, the desirable control target cannot be achieved in time, and nodes consume more energy due to frequent packet collisions and retransmissions. Consequently, we propose a simple routing solution to alleviate these research problems by modifying the original AODV routing protocol. The delay-threshold is considered to avoid any congested connection during routing procedures. The simulation results demonstrate that our solution can be appropriately applied in WSANs. Both the energy consumption and the control system response are improved.

Concepts: Control theory, Computer network, Control system, Control engineering, Convergence, Routing, Routing protocol, IS-IS

138

This paper reports a controlled breakdown (CBD) method to fabricate multiple nanopores in a silicon nitride (SiNx) membrane with control over both nanopore count and nanopore diameter. Despite the stochastic process of the breakdown, we found that the nanopores created via CBD, tend to be of the same diameter. We propose a membrane resistance model to explain and control the multiple nanopores forming in the membrane. We prove that the membrane resistance can reflect the number of nanopores in the membrane and that the diameter of the nanopores is controlled by the exposure time and strength of the electric field. This controllable multiple nanopore formation via CBD avoids the utilization of complicated instruments and time-intensive manufacturing. We anticipate CBD has the potential to become a nanopore fabrication technique which, integrated into an optical setup, could be used as a high-throughput and multichannel characterization technique.

Concepts: Scientific method, Semiconductor, Control theory, Control, Control system, Shutter speed, Science of photography, Nanopore

55

Safe clinical hormone replacement (HR) will likely become increasingly important in the growing populations of aged women and cancer patients undergoing treatments that ablate the ovaries. Cell-based HRT (cHRT) is an alternative approach that may allow certain physiological outcomes to be achieved with lower circulating hormone levels than pharmacological means due to participation of cells in the hypothalamus-pituitary-ovary feedback control loop. Here we describe the in vivo performance of 3D bioengineered ovarian constructs that recapitulate native cell-cell interactions between ovarian granulosa and theca cells as an approach to cHRT. The constructs are fabricated using either Ca++ or Sr++ to crosslink alginate. Following implantation in ovariectomized (ovx) rats, the Sr++-cross-linked constructs achieve stable secretion of hormones during 90 days of study. Further, we show these constructs with isogeneic cells to be effective in ameliorating adverse effects of hormone deficiency, including bone health, uterine health, and body composition in this rat model.

Concepts: Physiology, Menopause, Control theory, Ovarian follicle, Feedback, Puberty, Ovary, Control system

52

In highly social species such as humans, faces have evolved to convey rich information for social interaction, including expressions of emotions and pain [1-3]. Two motor pathways control facial movement [4-7]: a subcortical extrapyramidal motor system drives spontaneous facial expressions of felt emotions, and a cortical pyramidal motor system controls voluntary facial expressions. The pyramidal system enables humans to simulate facial expressions of emotions not actually experienced. Their simulation is so successful that they can deceive most observers [8-11]. However, machine vision may be able to distinguish deceptive facial signals from genuine facial signals by identifying the subtle differences between pyramidally and extrapyramidally driven movements. Here, we show that human observers could not discriminate real expressions of pain from faked expressions of pain better than chance, and after training human observers, we improved accuracy to a modest 55%. However, a computer vision system that automatically measures facial movements and performs pattern recognition on those movements attained 85% accuracy. The machine system’s superiority is attributable to its ability to differentiate the dynamics of genuine expressions from faked expressions. Thus, by revealing the dynamics of facial action through machine vision systems, our approach has the potential to elucidate behavioral fingerprints of neural control systems involved in emotional signaling.

Concepts: Spinal cord, Neuroscience, Emotion, Control system, Corticospinal tract, Motor system, Extrapyramidal system, Machine vision

50

This randomised controlled trial investigated if the usage of running shoes with a motion control system modifies injury risk in regular leisure-time runners compared to standard shoes, and if this influence depends on foot morphology.

Concepts: Randomized controlled trial, Control theory, Automation, Control, Control system, Chinese language, Grammatical conjugation, Motion control

49

Hand loss is a highly disabling event that markedly affects the quality of life. To achieve a close to natural replacement for the lost hand, the user should be provided with the rich sensations that we naturally perceive when grasping or manipulating an object. Ideal bidirectional hand prostheses should involve both a reliable decoding of the user’s intentions and the delivery of nearly “natural” sensory feedback through remnant afferent pathways, simultaneously and in real time. However, current hand prostheses fail to achieve these requirements, particularly because they lack any sensory feedback. We show that by stimulating the median and ulnar nerve fascicles using transversal multichannel intrafascicular electrodes, according to the information provided by the artificial sensors from a hand prosthesis, physiologically appropriate (near-natural) sensory information can be provided to an amputee during the real-time decoding of different grasping tasks to control a dexterous hand prosthesis. This feedback enabled the participant to effectively modulate the grasping force of the prosthesis with no visual or auditory feedback. Three different force levels were distinguished and consistently used by the subject. The results also demonstrate that a high complexity of perception can be obtained, allowing the subject to identify the stiffness and shape of three different objects by exploiting different characteristics of the elicited sensations. This approach could improve the efficacy and “life-like” quality of hand prostheses, resulting in a keystone strategy for the near-natural replacement of missing hands.

Concepts: Control theory, Cybernetics, Information, Feedback, Object, Control system, Hand, Ulnar nerve

31

Cephalopods such as octopuses have a combination of a stretchable skin and color-tuning organs to control both posture and color for visual communication and disguise. We present an electroluminescent material that is capable of large uniaxial stretching and surface area changes while actively emitting light. Layers of transparent hydrogel electrodes sandwich a ZnS phosphor-doped dielectric elastomer layer, creating thin rubber sheets that change illuminance and capacitance under deformation. Arrays of individually controllable pixels in thin rubber sheets were fabricated using replica molding and were subjected to stretching, folding, and rolling to demonstrate their use as stretchable displays. These sheets were then integrated into the skin of a soft robot, providing it with dynamic coloration and sensory feedback from external and internal stimuli.

Concepts: Optics, Light, Sensory system, Skin, Somatosensory system, Control theory, Control system, Electroluminescence

29

We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework.

Concepts: Fluid dynamics, Control theory, Feedback, PID controller, Control system, Controller, Control engineering, Volumetric flow rate

28

Caries lesions in dental hard tissues autofluoresce when exposed to light of certain wavelengths, whereas sound tissues do not, and this can be used as an in vitro histological marker for dental caries. Detection of autofluorescence is the basis of KaVo DIAGNOdentâ„¢ technology, and provides objective feedback control of laser-stimulated ablation of dental caries for the KaVo Key Laser 3â„¢. This Er:YAG laser operates at 2940nm wavelength, and is effective at removal of infected dental hard tissues. Micro-computed tomography (micro-CT) allows the non-invasive investigation of three-dimensional structures and analysis of mineral density profiles of dentine following laser ablation.

Concepts: Fluorescence, Light, Control theory, Wavelength, Feedback, Dental caries, Dentin, Control system

28

The use of statistical process control (SPC) charts in healthcare is increasing. The general advice when plotting SPC charts is to begin by selecting the right chart. This advice, in the case of attribute data, may be limiting our insights into the underlying process and consequently be potentially misleading. Given the general lack of awareness that additional insights may be obtained by using more than one SPC chart, there is a need to review this issue and make some recommendations. Under purely common cause variation the control limits on the xmr-chart and traditional attribute charts (eg, p-chart, c-chart, u-chart) will be in close agreement, indicating that the observed variation (xmr-chart) is consistent with the underlying Binomial model (p-chart) or Poisson model (c-chart, u-chart). However, when there is a material difference between the limits from the xmr-chart and the attribute chart then this also constitutes a signal of an underlying systematic special cause of variation. We use one simulation and two case studies to demonstrate these ideas and show the utility of plotting the SPC chart for attribute data alongside an xmr-chart. We conclude that the combined use of attribute charts and xmr-charts, which requires little additional effort, is a useful strategy because it is less likely to mislead us and more likely to give us the insight to do the right thing.

Concepts: Scientific method, Control theory, Process control, Control system, Control engineering, Conservatism, Control chart, Statistical process control