Discover the most talked about and latest scientific content & concepts.

Concept: Coenzymes


Chronic Fatigue Syndrome (CFS) is a complex condition, characterized by severe disabling fatigue with no known cause, no established diagnostic tests, and no universally effective treatment. Several studies have proposed symptomatic treatment with coenzyme Q10 (CoQ10) and nicotinamide adenine dinucleotide (NADH) supplementation. The primary endpoint was to assess the effect of CoQ10 plus NADH supplementation on age-predicted maximum heart rate (max HR) during a cycle ergometer test. Secondary measures included fatigue, pain and sleep.

Concepts: Adenosine triphosphate, Cellular respiration, Nicotinamide adenine dinucleotide, Heart rate, Adenine, Chronic fatigue syndrome, Coenzyme Q10, Coenzymes


Thiolases are a class of carbon-carbon bond forming enzymes with important applications in biotechnology and metabolic engineering as they provide a general method for the condensation of two acyl coenzyme A (CoA) substrates. As such, developing a greater understanding of their substrate selectivity would expand our ability to engineer the enzymatic or microbial production of a broad range of small-molecule targets. Here, we report the crystal structures and biochemical characterization of Acat2 and Acat5, two biosynthetic thiolases from Ascaris suum with varying selectivity toward branched compared to linear compounds. The structure of the Acat2-C91S mutant bound to propionyl-CoA shows that the terminal methyl group of the substrate, representing the α-branch point, is directed toward the conserved Phe 288 and Met 158 residues. In Acat5, the Phe ring is rotated to accommodate a hydroxyl-π interaction with an adjacent Thr side chain, decreasing space in the binding pocket and possibly accounting for its strong preference for linear substrates compared to Acat2. Comparison of the different Acat thiolase structures shows that Met 158 is flexible, adopting alternate conformations with the side chain rotated toward or away from a covering loop at the back of the active site. Mutagenesis of residues in the covering loop in Acat5 with the corresponding residues from Acat2 allows for highly increased accommodation of branched substrates, whereas the converse mutations do not significantly affect Acat2 substrate selectivity. Our results suggest an important contribution of second-shell residues to thiolase substrate selectivity and offer insights into engineering this enzyme class.

Concepts: Protein, Amino acid, Metabolism, Enzyme, Enzyme substrate, Enzyme inhibitor, Coenzyme A, Coenzymes


Cell-based synthesis offers many opportunities for preparing small molecules from simple renewable carbon sources by telescoping multiple reactions into a single fermentation step. One challenge in this area is the development of enzymatic carbon-carbon bond forming cycles that enable a modular disconnection of a target structure into cellular building blocks. In this regard, synthetic pathways based on thiolase enzymes to catalyze the initial carbon-carbon bond forming step between acyl coenzyme A (CoA) substrates offer a versatile route for biological synthesis, but the substrate diversity of such pathways is currently limited. In this report, we describe the identification and biochemical characterization of a thiolase-ketoreductase pair involved in production of branched acids in the roundworm, Ascaris suum, that demonstrates selectivity for forming products with an α-methyl branch using a propionyl-CoA extender unit. Engineering synthetic pathways for production of α-methyl acids in Escherichia coli using these enzymes allows the construction of microbial strains that produce either chiral 2-methyl-3-hydroxy acids (1.1 ± 0.2 g L(-1)) or branched enoic acids (1.12 ± 0.06 g L(-1)) in the presence of a dehydratase at 44% and 87% yield of fed propionate, respectively. In vitro characterization along with in vivo analysis indicates that the ketoreductase is the key driver for selectivity, forming predominantly α-branched products even when paired with a thiolase that highly prefers unbranched linear products. Our results expand the utility of thiolase-based pathways and provide biosynthetic access to α-branched compounds as precursors for polymers and other chemicals.

Concepts: Protein, Bacteria, Metabolism, Enzyme, Hydrogen, Carbon, Coenzyme A, Coenzymes


Ceramide and more complex sphingolipids constitute a diverse group of lipids, which serve important roles as structural entities of biological membranes and as regulators of cellular growth, differentiation, and development. Thus, ceramides are vital players in numerous diseases including metabolic and cardiovascular diseases as well as neurological disorders. Here we show that acyl coenzyme A binding protein (ACBP) potently facilitates very-long acyl chain ceramide synthesis. ACBP increases the activity of ceramide synthase 2 (CerS2) by more than 2-fold and CerS3 activity by 7-fold. ACBP binds very long-chain acyl-CoA esters, which is required for its ability to stimulate CerS activity. We also show that high-speed liver cytosol from wild type mice activates CerS3 activity, while cytosol from ACBP knock out mice does not. Consistently, CerS2 and CerS3 activities are significantly reduced in the testes of ACBP-/- mice, concomitant with a significant reduction in long- and very-long chain ceramide levels. Importantly, we show that ACBP interacts with CerS2 and CerS3. Our data uncover a novel mode of regulation of very-long acyl chain ceramide synthesis by ACBP, which we anticipate is of crucial importance in understanding the regulation of ceramide metabolism in pathogenesis.

Concepts: Gene, Metabolism, Cell membrane, Fatty acid metabolism, Lipid, Ceramide, Coenzymes, Acyl-CoA


The 1st International Carnitine Working Group concluded with a round table discussion addressing several areas of relevance. These included the design of future studies that could increase the amount of evidence-based data about the role of carnitine in the treatment of fatty acid oxidation defects, for which substantial controversy still exists. There was general consensus that future trials on the effect of carnitine in disorders of fatty acid oxidation should be randomized, double-blinded, multicentered and minimally include the following diagnoses: medium-chain acyl coenzyme A (CoA) dehydrogenase deficiency, very long-chain acyl-CoA dehydrogenase deficiency, long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency and mitochondrial trifunctional protein deficiency. Another area that generated interest was trials of carnitine in cardiomyopathy and, especially, the use of biomarkers to identify patients at greater risk of cardiotoxicity following treatment with anthracyclines. The possibility that carnitine treatment may lead to improvements in autistic behaviors was also discussed, although the evidence is still not sufficient to make any firm conclusions in this regard. Preliminary data on carnitine levels in children and adolescents with primary hypertension, low birth weight and nephrotic syndrome was also presented. Lastly, the panelists stressed that there remains an objective need to harmonize the terminology used to describe carnitine deficiencies (e.g., primary, secondary and systemic deficiency).

Concepts: Metabolism, Fatty acid, Fatty acid metabolism, Acetyl-CoA, Coenzyme A, 3-hydroxyacyl-CoA dehydrogenase, Coenzymes, Acyl-CoA


Atorvastatin is a 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase inhibitor widely used in treatment of hypercholesterolemia and prevention of coronary heart disease and has various pleiotropic effects. In this study, the efficacy of atorvastatin emulgel (2 %) in reducing postoperative pain at rest, pain during defecation and analgesic requirement after open hemorrhoidectomy was investigated.

Concepts: Wound healing, Heart, Effectiveness, Avicenna, Heart disease, HMG-CoA reductase, Atorvastatin, Coenzymes


General control non-repressible 5 (GCN5)-related N-acetyltransferases (GNAT) catalyze the transfer of an acyl moiety from acyl coenzyme A (acyl-CoA) to a diverse group of substrates and are widely distributed in all domains of life. This review of the currently available data acquired on GNAT enzymes by a combination of structural, mutagenesis and kinetic methods summarizes the key similarities and differences between several distinctly different families within the GNAT superfamily, with an emphasis on the mechanistic insights obtained from the analysis of the complexes with substrates or inhibitors. It discusses the structural basis for the common acetyltransferase mechanism, outlines the factors important for the substrate recognition, and describes the mechanism of action of inhibitors of these enzymes. It is anticipated that understanding of the structural basis behind the reaction and substrate specificity of the enzymes from this superfamily can be exploited in the development of novel therapeutics to treat human diseases and combat emerging multidrug-resistant microbial infections.

Concepts: Metabolism, Enzyme, Enzyme substrate, Product, Catalysis, Fatty acid metabolism, Coenzymes, Acyl-CoA


Many carboxylic acid-containing drugs are associated with idiosyncratic drug toxicity (IDT), which may be caused by reactive acyl glucuronide metabolites. The rate of acyl migration has been earlier suggested as a predictor of acyl glucuronide reactivity. Additionally, acyl Coenzyme A (CoA) conjugates are known to be reactive. Here, 13 drugs with a carboxylic acid moiety were incubated with human liver microsomes to produce acyl glucuronide conjugates for the determination of acyl glucuronide half-lives by acyl migration and with HepaRG cells to monitor the formation of acyl CoA conjugates, their further conjugate metabolites, and trans-acylation products with glutathione. Additionally, in vitro cytotoxicity and mitochondrial toxicity experiments were performed with HepaRG cells to compare the predictability of toxicity. Clearly, longer acyl glucuronide half-lives were observed for safe drugs compared to drugs that can cause IDT. Correlation between half-lives and toxicity classification increased when “relative half-lives,” taking into account the formation of isomeric AG-forms due to acyl migration and eliminating the effect of hydrolysis, were used instead of plain disappearance of the initial 1-O-β-AG-form. Correlation was improved further when a daily dose of the drug was taken into account. CoA and related conjugates were detected primarily for the drugs that have the capability to cause IDT, although some exceptions to this were observed. Cytotoxicity and mitochondrial toxicity did not correlate to drug safety. On the basis of the results, the short relative half-life of the acyl glucuronide (high acyl migration rate), high daily dose and detection of acyl CoA conjugates, or further metabolites derived from acyl CoA together seem to indicate that carboxylic acid-containing drugs have a higher probability to cause drug-induced liver injury (DILI).

Concepts: Pharmacology, Metabolism, Drug, Fatty acid metabolism, Toxicology, Coenzyme A, Coenzymes, Acyl-CoA



Over the past 25 years a growing number of distinct syndromes/mutations associated with compromised mitochondrial function have been identified that share a common feature: urinary excretion of 3-methylglutaconic acid (3MGA). In the leucine degradation pathway, carboxylation of 3-methylcrotonyl CoA leads to formation of 3-methylglutaconyl CoA while 3-methylglutaconyl CoA hydratase converts this metabolite to 3-hydroxy-3-methylglutaryl CoA (HMG CoA). In “primary” 3MGA-uria, mutations in the hydratase are directly responsible for the accumulation of 3MGA. On the other hand, in all “secondary” 3MGA-urias, no defect in leucine catabolism exists and the metabolic origin of 3MGA is unknown. Herein, a path to 3MGA from mitochondrial acetyl CoA is proposed. The pathway is initiated when syndrome-associated mutations/DNA deletions result in decreased Krebs cycle flux. When this occurs, acetoacetyl CoA thiolase condenses two acetyl CoA into acetoacetyl CoA plus CoASH. Subsequently, HMG CoA synthase 2 converts acetoacetyl CoA and acetyl CoA to HMG CoA. Under syndrome-specific metabolic conditions, 3-methylglutaconyl CoA hydratase converts HMG CoA into 3-methylglutaconyl CoA in a reverse reaction of the leucine degradation pathway. This metabolite fails to proceed further up the leucine degradation pathway owing to the kinetic properties of 3-methylcrotonyl CoA carboxylase. Instead, hydrolysis of the CoA moiety of 3-methylglutaconyl CoA generates 3MGA, which appears in urine. If experimentally confirmed, this pathway provides an explanation for the occurrence of 3MGA in multiple disorders associated with compromised mitochondrial function.

Concepts: Metabolism, Adenosine triphosphate, Mitochondrion, Cellular respiration, Acetyl-CoA, Citric acid cycle, Coenzyme A, Coenzymes