Discover the most talked about and latest scientific content & concepts.

Concept: Charcoal


It has been suggested that conversion to organic farming contributes to soil carbon sequestration, but until now a comprehensive quantitative assessment has been lacking. Therefore, datasets from 74 studies from pairwise comparisons of organic vs. nonorganic farming systems were subjected to metaanalysis to identify differences in soil organic carbon (SOC). We found significant differences and higher values for organically farmed soils of 0.18 ± 0.06% points (mean ± 95% confidence interval) for SOC concentrations, 3.50 ± 1.08 Mg C ha(-1) for stocks, and 0.45 ± 0.21 Mg C ha(-1) y(-1) for sequestration rates compared with nonorganic management. Metaregression did not deliver clear results on drivers, but differences in external C inputs and crop rotations seemed important. Restricting the analysis to zero net input organic systems and retaining only the datasets with highest data quality (measured soil bulk densities and external C and N inputs), the mean difference in SOC stocks between the farming systems was still significant (1.98 ± 1.50 Mg C ha(-1)), whereas the difference in sequestration rates became insignificant (0.07 ± 0.08 Mg C ha(-1) y(-1)). Analyzing zero net input systems for all data without this quality requirement revealed significant, positive differences in SOC concentrations and stocks (0.13 ± 0.09% points and 2.16 ± 1.65 Mg C ha(-1), respectively) and insignificant differences for sequestration rates (0.27 ± 0.37 Mg C ha(-1) y(-1)). The data mainly cover top soil and temperate zones, whereas only few data from tropical regions and subsoil horizons exist. Summarizing, this study shows that organic farming has the potential to accumulate soil carbon.

Concepts: Agriculture, Soil, Charcoal, Organic farming, Humus, Input, Crop rotation, Subsoil


Wetland soils contain some of the highest stores of soil carbon in the biosphere. However, there is little understanding of the quantity and distribution of carbon stored in our remaining wetlands or of the potential effects of human disturbance on these stocks. Here we use field data from the 2011 National Wetland Condition Assessment to provide unbiased estimates of soil carbon stocks for wetlands at regional and national scales. We find that wetlands in the conterminous United States store a total of 11.52 PgC, much of which is within soils deeper than 30 cm. Freshwater inland wetlands, in part due to their substantial areal extent, hold nearly ten-fold more carbon than tidal saltwater sites-indicating their importance in regional carbon storage. Our data suggest a possible relationship between carbon stocks and anthropogenic disturbance. These data highlight the need to protect wetlands to mitigate the risk of avoidable contributions to climate change.

Concepts: Soil, Ecosystem, Carbon, Climate change, Charcoal, Biome, Global warming, Land management


Global biomass burning generates 40 million to 250 million tons of charcoal every year, part of which is preserved for millennia in soils and sediments. We have quantified dissolution products of charcoal in a wide range of rivers worldwide and show that globally, a major portion of the annual charcoal production is lost from soils via dissolution and subsequent transport to the ocean. The global flux of soluble charcoal accounts to 26.5 ± 1.8 million tons per year, which is ~10% of the global riverine flux of dissolved organic carbon (DOC). We suggest that the mobilization of charcoal and DOC out of soils is mechanistically coupled. This study closes a major gap in the global charcoal budget and provides critical information in the context of geoengineering.

Concepts: River, Charcoal, Ocean, Wind, Canal, Globalization, Global warming, Pyrolysis


In this study, two carbon materials [chicken manure biochar (CMB) and black carbon (BC)] were investigated for their effects on the reduction of hexavalent chromium [Cr(VI)] in two spiked [600 mg Cr(VI) kg(-1)] and one tannery waste contaminated [454 mg Cr(VI) kg(-1)] soils. In spiked soils, both the rate and the maximum extent of reduction of Cr(VI) to trivalent Cr [Cr(III)] were higher in the sandy loam than clay soil, which is attributed to the difference in the extent of Cr(VI) adsorption between the soils. The highest rate of Cr(VI) reduction was observed in BC-amended sandy loam soil, where it reduced 452 mg kg(-1) of Cr(VI), followed by clay soil (427 mg kg(-1)) and tannery soil (345 mg kg(-1)). X-ray photoelectron microscopy confirmed the presence of both Cr(VI) and Cr(III) species in BC within 24 h of addition of Cr(VI), which proved its high reduction capacity. The resultant Cr(III) species either adsorbs or precipitates in BC and CMB. The addition of carbon materials to the tannery soil was also effective in decreasing the phytotoxicity of Cr(VI) in mustard (Brassica juncea L.) plants. Therefore, it is concluded that the addition of carbon materials enhanced the reduction of Cr(VI) and the subsequent immobilization of Cr(III) in soils.

Concepts: Iron, Redox, Carbon, Vitamin C, Charcoal, Chromium, Mustard plant, Brassica juncea


A fraction of palm kernel shells (PKS) was pyrolyzed in a fluidized bed reactor. The experiments were performed in a temperature range of 479-555°C to produce bio-oil, biochar, and gas. All the bio-oils were analyzed quantitatively and qualitatively by GC-FID and GC-MS. The maximum content of phenolic compounds in the bio-oil was 24.8wt.% at ∼500°C. The maximum phenol content in the bio-oil, as determined by the external standard method, was 8.1wt.%. A bio-oil derived from the pyrolysis of PKS was used in the synthesis of phenolic resin, showing that the bio-oil could substitute for fossil phenol up to 25wt.%. The biochar was activated using CO2 at a final activation temperature of 900°C with different activation time (1-3h) to produce activated carbon. Activated carbons produced were microporous, and the maximum surface area of the activated carbons produced was 807m(2)/g.

Concepts: Carbon dioxide, Carbon, Charcoal, Phenols, Fossil fuel, Coal, Activated carbon, Pyrolysis


Australia’s tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia’s tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha(-1) (range 14-963 Mg OC ha(-1)). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha(-1) yr(-1). Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia’s 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO2-equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr(-1), with a CO2-equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes.

Concepts: Carbon dioxide, Soil, Marsh, Charcoal, Global warming, Carbon capture and storage, Tidal marsh, Biosequestration


Soil is the largest terrestrial carbon reservoir and may influence the sign and magnitude of carbon cycle-climate feedbacks. Many Earth system models (ESMs) estimate a significant soil carbon sink by 2100, yet the underlying carbon dynamics determining this response have not been systematically tested against observations. We used (14)C data from 157 globally distributed soil profiles sampled to 1-meter depth to show that ESMs underestimated the mean age of soil carbon by a factor of more than six (430 ± 50 years versus 3100 ± 1800 years). Consequently, ESMs overestimated the carbon sequestration potential of soils by a factor of nearly two (40 ± 27%). These inconsistencies suggest that ESMs must better represent carbon stabilization processes and the turnover time of slow and passive reservoirs when simulating future atmospheric carbon dioxide dynamics.

Concepts: Photosynthesis, Carbon dioxide, Soil, Nitrogen, Carbon, Charcoal, 21st century, Carbon capture and storage


Vegetation restoration has been conducted in the Chinese Loess Plateau (CLP) since the 1950s, and large areas of farmland have been converted to forest and grassland, which largely results in SOC change. However, there has been little comparative research on SOC sequestration and distribution between secondary forest and restored grassland. Therefore, we selected typical secondary forest (SF-1 and SF-2) and restored grassland (RG-1 and RG-2) sites and determined the SOC storage. Moreover, to illustrate the factors resulting in possible variance in SOC sequestration, we measured the soil δ(13)C value. The average SOC content was 6.8, 9.9, 17.9 and 20.4 g kg(-1) at sites SF-1, SF-2, RG-1 and RG-2, respectively. Compared with 0-100 cm depth, the percentage of SOC content in the top 20 cm was 55.1%, 55.3%, 23.1%, and 30.6% at sites SF-1, SF-2, RG-1 and RG-2, suggesting a higher SOC content in shallow layers in secondary forest and in deeper layers in restored grassland. The variation of soil δ(13)C values with depth in this study might be attributed to the mixing of new and old carbon and kinetic fractionation during the decomposition of SOM by microbes, whereas the impact of the Suess effect (the decline of (13)C atmospheric CO(2) values with the burning of fossil fuel since the Industrial Revolution) was minimal. The soil δ(13)C value increased sharply in the top 20 cm, which then increased slightly in deeper layers in secondary forest, indicating a main carbon source of surface litter. However the soil δ(13)C values exhibited slow increases in the whole profile in the restored grasslands, suggesting that the contribution of roots to soil carbon in deeper layers played an important role. We suggest that naturally restored grassland would be a more effective vegetation type for SOC sequestration due to higher carbon input from roots in the CLP.

Concepts: Carbon dioxide, Soil, Carbon, Vegetation, Grassland, Charcoal, Fossil fuel, Loess Plateau


Despite rapid increase of suicide by charcoal burning within 5 years, little is known about the characteristics of charcoal burning suicide in Korea. This study aimed to examine the trends and risk factors in the spread of suicide using this method. We identified an association between media reporting of suicide by charcoal burning and its incidence. Data on suicide from 2007 to 2011 were obtained from the Korean National Statistical Office. Cross-correlation analysis was used. Increasing incidence of suicide by charcoal burning was correlated with higher education levels, male sex, and the latter half of the year. Victims of charcoal burning suicide were more likely to be young, male, single, highly educated, professional, urban-based, and to die between October and December. Internet reports of suicide via charcoal burning tended to precede the increased incidence of suicide using this method, but only during the early period of the suicide epidemic. Our findings suggest that one episode of heavy media coverage of a novel method, such as charcoal burning, is sufficient to increase the prevalence of suicide by that method even after media coverage decreases. These findings are expected to contribute to the prevention of increasing rates of suicide by charcoal burning.

Concepts: Epidemiology, Education, Higher education, Charcoal, Coal, Pyrolysis, Suicide methods


Mesoporous carbonaceous materials (Starbons®) derived from low-value/waste bio-resources separate CO2 from CO2 /N2 mixtures. Compared to Norit activated charcoal (AC), Starbons® have much lower microporosities (8-32 % versus 73 %) yet adsorb up to 65 % more CO2 . The presence of interconnected micropores and mesopores is responsible for the enhanced CO2 adsorption. The Starbons® also showed three-four times higher selectivity for CO2 adsorption rather than N2 adsorption compared to AC.

Concepts: Oxygen, Carbon dioxide, Nitrogen, Carbon, Adsorption, Charcoal, Activated carbon, Pyrolysis