Discover the most talked about and latest scientific content & concepts.

Concept: Brain coral


Tropical corals live close to their upper thermal limit making them vulnerable to unusually warm summer sea temperatures. The resulting thermal stress can lead to breakdown of the coral-algal symbiosis, essential for the functioning of reefs, and cause coral bleaching. Mass coral bleaching is a modern phenomenon associated with increases in reef temperatures due to recent global warming. Widespread bleaching has typically occurred during El Niño events. We examine the historical level of stress for 100 coral reef locations with robust bleaching histories. The level of thermal stress (based on a degree heating month index, DHMI) at these locations during the 2015-2016 El Niño was unprecedented over the period 1871-2017 and exceeded that of the strong 1997-1998 El Niño. The DHMI was also 5 times the level of thermal stress associated with the ‘pre-industrial’, 1877-1878, El Niño. Coral reefs have, therefore, already shown their vulnerability to the modest (~0.92 °C) global warming that has occurred to date. Estimates of future levels of thermal stress suggest that even the optimistic 1.5 °C Paris Agreement target is insufficient to prevent more frequent mass bleaching events for the world’s reefs. Effectively, reefs of the future will not be the same as those of the past.

Concepts: Algae, Coral, Coral reef, Scleractinia, Coral bleaching, Cnidaria, Coral reefs, Brain coral


Corals thrive in a variety of environments, from low wave and tidal energy lagoons, to high energy tidal reef flats, but remain dependent upon suitable substrate. Herein we reviewed the phenomenon of free-living corals (coralliths), examined whether they have the capacity to create their own stable habitat in otherwise uninhabitable, poor substrate environments through ‘free-living stabilization’, and explore their potential ecological role on coral reefs. This stabilization could be achieved by coral settlement and survival on mobile substrate, with subsequent growth into free-living coralliths until a critical mass is reached that prevents further movement. This allows for secondary reef colonization by other coral species. To preliminarily test this hypothesis we provide evidence that the potential to support secondary coral colonisation increases with corallith size. Due to the limited diversity of corallith species observed here and in the literature, and the lack of physiological differences exhibited by coralliths here to static controls, it seems likely that only a small selection of coral species have the ability to form coralliths, and the potential to create their own stable habitat.

Concepts: Algae, Coral, Coral reef, Scleractinia, Coral bleaching, Cnidaria, Coral reefs, Brain coral


Coral reef restoration and management techniques are in ever-increasing demand due to the global decline of coral reefs in the last several decades. Coral relocation has been established as an appropriate restoration technique in select cases, particularly where corals are scheduled for destruction. However, continued long-term monitoring of recovery of transplanted corals is seldom sustained. Removal of coral from a navigation channel and relocation to a similar nearby dredged site occurred in 2005. Coral recovery at the donor site and changes in fish populations at the receiving site were tracked periodically over the following decade. Coral regrowth at the donor site was rapid until a recent bleaching event reduced coral cover by more than half. The transplant of mature colonies increased spatial complexity at the receiving site, immediately increasing fish biomass, abundance, and species that was maintained throughout subsequent surveys. Our research indicates that unlike the majority of historical accounts of coral relocation in the Pacific, corals transplanted into wave-protected areas with similar conditions as the original site can have high survival rates. Data on long-term monitoring of coral transplants in diverse environments is central in developing management and mitigation strategies.

Concepts: Algae, Coral, Coral reef, Scleractinia, Coral bleaching, Cnidaria, Coral reefs, Brain coral


Climate warming threatens to increase mass coral bleaching events, and several studies have projected the demise of tropical coral reefs this century. However, recent evidence indicates corals may be able to respond to thermal stress though adaptive processes (e.g., genetic adaptation, acclimatization, and symbiont shuffling). How these mechanisms might influence warming induced bleaching is largely unknown. This study compared how different adaptive processes could affect coral bleaching projections. We used the latest bias-corrected global sea surface temperature (SST) output from the NOAA/GFDL Earth System Model 2 (ESM2M) for the pre-industrial period though 2100 to project coral bleaching trajectories. Initial results showed that, in the absence of adaptive processes, application of a pre-industrial climatology to the NOAA Coral Reef Watch bleaching prediction method over-predicts the present day bleaching frequency. This suggests that corals may have already responded adaptively to some warming over the industrial period. We then modified the prediction method so that the bleaching threshold either permanently increased in response to thermal history (e.g., simulating directional genetic selection) or temporarily increased for 2-10 years in response to a bleaching event (e.g., simulating symbiont shuffling). A bleaching threshold that changes relative to the preceding 60 years of thermal history reduced the frequency of mass bleaching events by 20-80% compared with the ‘no adaptive response’ prediction model by 2100, depending on the emissions scenario. When both types of adaptive responses were applied, up to 14% more reef cells avoided high frequency bleaching by 2100. However, temporary increases in bleaching thresholds alone only delayed the occurrence of high frequency bleaching by ~10 years in all but the lowest emissions scenario. Future research should test the rate and limit of different adaptive responses for coral species across latitudes and ocean basins to determine if and how much corals can respond to increasing thermal stress. This article is protected by copyright. All rights reserved.

Concepts: Algae, Coral, Coral reef, Coral bleaching, Cnidaria, Great Barrier Reef, Coral reefs, Brain coral


The levels of 16 US EPA priority polycyclic aromatic hydrocarbons (PAHs) were investigated in corals, ambient seawater and sediments of Hainan Island, China, using gas chromatography - mass spectrometry (GC-MS). The total PAHs (∑PAHs) concentrations ranged from 273.79 to 407.82ng/L in seawater. Besides, the concentrations of ∑PAHs in corals 333.88-727.03ng/g dw) were markedly (P < 0.05) higher than ambient sediments 67.29-196.99ng/g dw), demonstrating the bioaccumulation ability of PAHs by corals. The highest concentration of ∑PAHs was detected at site S2 in Pavona decussate, which also bore the highest ∑PAHs levels in both seawater and sediments. The massive corals were more enriched with PAHs than the branching corals. Although 2 and 3-ring PAHs were predominant and accounted for 69.27-80.46% of the ∑PAHs in corals and ambient environment, the levels of high molecular weight (HMW) PAHs (4-6 ring) in corals also demonstrated their potential dangers for corals and organisms around coral reefs. Biota-sediment accumulation factor (BSAF) refers to an index of the pollutant absorbed by aquatic organisms from the surrounding sediments. The poor correlation between log BSAF and log Kow (hydrophobicity) indicated that PAHs in corals maybe not bioaccumulate from the ambient sediments but through pathways like absorbing from seawater, symbiosis, and feeding. Based on our data, long-term ecological monitoring in typical coral reef ecosystems combined with ecotoxicological tests of PAHs on corals is necessary to determine the impacts of PAHs on coral reefs.

Concepts: Algae, Coral, Coral reef, Ecosystem, Polycyclic aromatic hydrocarbon, Cnidaria, Naphthalene, Brain coral


The distribution and the structure of benthic assemblages vary with latitude. However, few studies have described benthic communities along large latitudinal gradients, and patterns of variation are not fully understood. Taiwan, lying between 21.90°N and 25.30°N, is located at the center of the Philippine-Japan arc and lies at the northern margin of coral reef development. A wide range of habitats is distributed along this latitudinal gradient, from extensive fringing coral reefs at the southern coast to non-reefal communities at the north. In this study, we examined the structure of benthic communities around Taiwan, by comparing its assemblages in four regions, analyzing the effects of the latitudinal gradient, and highlighting regional characteristics. A total of 25 sites, 125 transects, and 2,625 photographs were used to analyze the benthic communities. Scleractinian corals present an obvious gradient of increasing diversity from north to south, whereas macro-algae diversity is higher on the north-eastern coast. At the country scale, Taiwanese coral communities were dominated by turf algae (49%). At the regional scale, we observed an important heterogeneity that may be caused by local disturbances and habitat degradation that smooths out regional differences. In this context, our observations highlight the importance of managing local stressors responsible for reef degradation. Overall, this study provides an important baseline upon which future changes in benthic assemblages around Taiwan can be assessed.

Concepts: Algae, Gradient, Coral, Coral reef, Scleractinia, Coral bleaching, Cnidaria, Brain coral


Coral reefs are in decline worldwide due to anthropogenic stressors including reductions in water and substratum quality. Dredging results in the mobilization of sediments, which can stress and kill corals via increasing turbidity, tissue damage and burial. The Particle Tracking Model (PTM) was applied to predict the potential impacts of dredging-associated sediment exposure on the coral reef ecosystems of Apra Harbor, Guam. The data were interpreted using maps of bathymetry and coral abundance and distribution in conjunction with impact parameters of suspended sediment concentration (turbidity) and sedimentation using defined coral response thresholds. The results are presented using a “stoplight” model of negligible or limited impacts to coral reefs (green), moderate stress from which some corals would be expected to recover while others would not (yellow) and severe stress resulting in mortality (red). The red conditions for sediment deposition rate and suspended sediment concentration (SSC) were defined as values exceeding 25 mg cm(-2) d(-1) over any 30 day window and >20 mg/l for any 18 days in any 90 day period over a column of water greater than 2 m, respectively. The yellow conditions were defined as values >10 mg cm(-2) d(-1) and <25 mg cm(-2) d(-1) over any 30 day period, and as 20% of 3 months' concentration exceeding 10 mg/l for the deposition and SSC, respectively. The model also incorporates the potential for cumulative effects on the assumption that even sub-lethal stress levels can ultimately lead to mortality in a multi-stressor system. This modeling approach can be applied by resource managers and regulatory agencies to support management decisions related to planning, site selection, damage reduction, and compensatory mitigation.

Concepts: Algae, Sediment, Coral, Coral reef, Sedimentary rock, Cnidaria, Coral reefs, Brain coral


Coral reefs are in decline across the globe as a result of overexploitation, pollution, disease and, more recently, climate change. The impacts of changes in coral cover on associated fish communities can be difficult to predict because of the uneven dependence of reef fish species on corals for food, shelter or the three-dimensional structure they provide. We compared live coral cover, reef fish community metrics, and their associations in two surveys of the lagoon of the remote atoll of Mataiva (French Polynesia) carried out 31 years apart. In contrast to the general pattern of decreasing coral cover reported for many parts of the Indo-Pacific region, live coral cover increased 6-7 fold at Mataiva between 1981 and 2012, and fish density nearly doubled. The stable overall reef fish species richness belied a significant shift in community structure. There was little overlap in community composition across years, and fish assemblages in 2012 were more homogeneous in composition than they were in 1981. Changes in species abundance were not clearly related to species-specific reliance on corals. The strong positive relationships between live coral cover and fish diversity and abundance noted in 1981, when coral cover rarely exceeded 10%, were no longer present in 2012, when coral cover rarely fell below this value. The most parsimonious explanation for these contrasting relationships is that, over the combined range of coral cover observed in the 1981 and 2012 snapshots, there is a rapidly asymptotic relationship between coral and fish. Our results, and other data from the south and west Pacific, suggest that fish diversity and abundance might accumulate rapidly up to a threshold of approximately 10% live coral cover. Such a relationship would have implications for our expectations of resistance and recovery of reef fish communities facing an increasingly severe regime of coral reef disturbances.

Concepts: Algae, Coral, Coral reef, Pacific Ocean, Cnidaria, Coral reefs, Lagoon, Brain coral


Consequences of reef phase shifts on fish communities remain poorly understood. Studies on the causes, effects and consequences of phase shifts on reef fish communities have only been considered for coral-to-macroalgae shifts. Therefore, there is a large information gap regarding the consequences of novel phase shifts and how these kinds of phase shifts impact on fish assemblages. This study aimed to compare the fish assemblages on reefs under normal conditions (relatively high cover of corals) to those which have shifted to a dominance of the zoantharian Palythoa cf. variabilis on coral reefs in Todos os Santos Bay (TSB), Brazilian eastern coast. We examined eight reefs, where we estimated cover of corals and P. cf. variabilis and coral reef fish richness, abundance and body size. Fish richness differed significantly between normal reefs (48 species) and phase-shift reefs (38 species), a 20% reduction in species. However there was no difference in fish abundance between normal and phase shift reefs. One fish species, Chaetodon striatus, was significantly less abundant on normal reefs. The differences in fish assemblages between different reef phases was due to differences in trophic groups of fish; on normal reefs carnivorous fishes were more abundant, while on phase shift reefs mobile invertivores dominated.

Concepts: Algae, Fish, Coral, Coral reef, Scleractinia, Cnidaria, Coral reefs, Brain coral


A one-dimensional wave model was used to investigate the reef top wave dynamics across a large suite of idealized reef-lagoon profiles, representing barrier coral reef systems under different sea-level rise (SLR) scenarios. The modeling shows that the impacts of SLR vary spatially and are strongly influenced by the bathymetry of the reef and coral type. A complex response occurs for the wave orbital velocity and forces on corals, such that the changes in the wave dynamics vary reef by reef. Different wave loading regimes on massive and branching corals also leads to contrasting impacts from SLR. For many reef bathymetries, wave orbital velocities increase with SLR and cyclonic wave forces are reduced for certain coral species. These changes may be beneficial to coral health and colony resilience and imply that predicting SLR impacts on coral reefs requires careful consideration of the reef bathymetry and the mix of coral species.

Concepts: Algae, Coral, Coral reef, Coral bleaching, Cnidaria, Coral reefs, Belize Barrier Reef, Brain coral