SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Bombus terrestris

197

Bumblebees (Bombus terrestris) use information from surrounding electric fields to make foraging decisions. Electroreception in air, a nonconductive medium, is a recently discovered sensory capacity of insects, yet the sensory mechanisms remain elusive. Here, we investigate two putative electric field sensors: antennae and mechanosensory hairs. Examining their mechanical and neural response, we show that electric fields cause deflections in both antennae and hairs. Hairs respond with a greater median velocity, displacement, and angular displacement than antennae. Extracellular recordings from the antennae do not show any electrophysiological correlates to these mechanical deflections. In contrast, hair deflections in response to an electric field elicited neural activity. Mechanical deflections of both hairs and antennae increase with the electric charge carried by the bumblebee. From this evidence, we conclude that sensory hairs are a site of electroreception in the bumblebee.

Concepts: Electromagnetism, Electric charge, Electromagnetic field, Honey bee, Bee, Bumblebee, Bombus terrestris, Bumblebees

164

There is now considerable evidence that climate change is disrupting the phenology of key pollinator species. The recently reported UK winter activity of the bumblebee Bombus terrestris brings a novel set of thermal challenges to bumblebee workers that would typically only be exposed to summer conditions. Here we assess the ability of workers to survive acute and chronic cold stress (via lower lethal temperatures and lower lethal times at 0°C), the capacity for rapid cold hardening (RCH) and the influence of diet (pollen versus nectar consumption) on supercooling points (SCP). Comparisons are made with chronic cold stress indices and SCPs in queen bumblebees. Results showed worker bees were able to survive acute temperatures likely to be experienced in a mild winter, with queens significantly more tolerant to chronic cold temperature stress. The first evidence of RCH in any Hymenoptera is shown. In addition, dietary manipulation indicated the consumption of pollen significantly increased SCP temperature. These results are discussed in the light of winter active bumblebees and climate change.

Concepts: Temperature, Honey bee, Pollination, Bee, Bee sting, Bumblebee, Pollinator, Bombus terrestris

72

Bumblebees secrete a substance from their tarsi wherever they land, which can be detected by conspecifics. These secretions are referred to as scent-marks, which bumblebees are able to use as social cues. Although it has been found that bumblebees can detect and associate scent-marks with rewarding or unrewarding flowers, their ability at discriminating between scent-marks from bumblebees of differing relatedness is unknown. We performed three separate experiments with bumblebees (Bombus terrestris), where they were repeatedly exposed to rewarding and unrewarding artificial flowers simultaneously. Each flower type carried scent-marks from conspecifics of differing relatedness or were unmarked. We found that bumblebees are able to distinguish between 1. Unmarked flowers and flowers that they themselves had scent-marked, 2. Flowers scent-marked by themselves and flowers scent-marked by others in their nest (nestmates), and 3. Flowers scent-marked by their nestmates and flowers scent-marked by non-nestmates. The bumblebees found it more difficult to discriminate between each of the flower types when both flower types were scent-marked. Our findings show that bumblebees have the ability to discriminate between scent-marks of conspecifics, which are potentially very similar in their chemical composition, and they can use this ability to improve their foraging success.

Concepts: Pollination, Flower, Pollinator decline, Pollination syndrome, Bee, Bumblebee, Bombus terrestris, Bumblebees

8

More than 100 years ago, Karl von Frisch showed that honeybee workers learn and discriminate colors. Since then, many studies confirmed the color learning capabilities of females from various hymenopteran species. Yet, little is known about visual learning and memory in males despite the fact that in most bee species males must take care of their own needs and must find rewarding flowers to obtain food. Here we used the proboscis extension response (PER) paradigm to study the color learning capacities of workers and drones of the bumblebee, Bombus terrestris. Light stimuli were paired with sucrose reward delivered to the insects' antennae and inducing a reflexive extension of the proboscis. We evaluated color learning (i.e. conditioned PER to color stimuli) in absolute and differential conditioning protocols and mid-term memory retention was measured two hours after conditioning. Different monochromatic light stimuli in combination with neutral density filters were used to ensure that the bumblebees could only use chromatic and not achromatic (e.g. brightness) information. Furthermore, we tested if bees were able to transfer the learned information from the PER conditioning to a novel discrimination task in a Y-maze. Both workers and drones were capable of learning and discriminating between monochromatic light stimuli and retrieved the learned stimulus after two hours. Drones performed as well as workers during conditioning and in the memory test, but failed in the transfer test in contrast to workers. Our data clearly show that bumblebees can learn to associate a color stimulus with a sugar reward in PER conditioning and that both workers and drones reach similar acquisition and mid-term retention performances. Additionally, we provide evidence that only workers transfer the learned information from a Pavlovian to an operant situation.

Concepts: Psychology, Honey bee, Bee, Bumblebee, Pollinators, Bombus terrestris, Bumblebees, Karl von Frisch

2

Disease transmission networks are key for understanding parasite epidemiology. Within the social insects, structured contact networks have been suggested to limit the spread of diseases to vulnerable members of their society, such as the queen or brood. However, even these complex social structures do not provide complete protection, as some diseases, which are transmitted by workers during brood care, can still infect the brood. Given the high rate of feeding interactions that occur in a social insect colony, larvae may act as disease transmission hubs. Here we use the bumblebee Bombus terrestris and its parasite Crithidia bombi to determine the role of brood in bumblebee disease transmission networks. Larvae that were artificially inoculated with C. bombi showed no signs of infection seven days after inoculation. However, larvae that received either an artificial inoculation or a contaminated feed from brood-caring workers were able to transmit the parasite to naive workers. These results suggest that the developing brood is a potential route of intracolonial disease transmission and should be included when considering social insect disease transmission networks.

Concepts: Epidemiology, Disease, Infectious disease, Infection, Bee, Bumblebee, Ant, Bombus terrestris

1

Many insects rely on vision to find food, to return to their nest and to carefully control their flight between these two locations. The amount of information available to support these tasks is, in part, dictated by the spatial resolution and contrast sensitivity of their visual systems. Here, we investigate the absolute limits of these visual properties for visually guided position and speed control in Bombus terrestris. Our results indicate that the limit of spatial vision in the translational motion detection system of B. terrestris lies at 0.21 cycles deg(-1) with a peak contrast sensitivity of at least 33. In the perspective of earlier findings, these results indicate that bumblebees have higher contrast sensitivity in the motion detection system underlying position control than in their object discrimination system. This suggests that bumblebees, and most likely also other insects, have different visual thresholds depending on the behavioral context.

Concepts: Optics, Visual system, Honey bee, Bee, Bumblebee, Insects, Bombus terrestris, Bumblebees

1

Bombus terrestris is one of the most commonly used insect models to investigate visually guided behavior and spatial vision in particular. Two fundamental measures of spatial vision are spatial resolution and contrast sensitivity. In this study, we report the threshold of spatial resolution in B. terrestris and characterize the contrast sensitivity function of the bumblebee visual system for a dual choice discrimination task. We trained bumblebees in a Y-maze experimental set-up to associate a vertical sinusoidal grating with a sucrose reward, and a horizontal grating with absence of a reward. Using a logistic psychometric function, we estimated a resolution threshold of 0.21 cycles deg(-1) of visual angle. This resolution is in the same range but slightly lower than that found in honeybees (Apis mellifera and A. cerana) and another bumblebee species (B. impatiens). We also found that the contrast sensitivity of B. terrestris was 1.57 for the spatial frequency 0.090 cycles deg(-1) and 1.26 for 0.18 cycles deg(-1).

Concepts: Mathematics, Honey bee, Bumblebee, Apidae, Pollinators, Bombus terrestris, Bumblebees, Apinae

1

Understanding how pollinator behavior may influence pollen transmission across floral types is a major challenge, as pollinator decision depends on a complex range of environmental cues and prior experience. Here we report an experiment using the plant Antirrhinum majus and the bumblebee Bombus terrestris to investigate how prior learning experience may affect pollinator preferences between floral types when these are presented together. We trained naive bumblebees to forage freely on flowering individuals of either A. majus pseudomajus (magenta flowers) or A. majus striatum (yellow flowers) in a flight cage. We then used a Y-maze device to expose trained bumblebees to a dual choice between the floral types. We tested the influence of training on their choice, depending on the type of plant signals available (visual signals, olfactory signals, or both). Bumblebees had no innate preference for either subspecies. Bumblebees trained on the yellow-flowered subspecies later preferred the yellow type, even when only visual or only olfactory signals were available, and their preference was not reinforced when both signal types were available. In contrast, bumblebees trained on the magenta-flowered subspecies showed no further preference between floral types and took slightly more time to make their choice. Since pollinator constancy has been observed in wild populations of A. majus with mixed floral types, we suggest that such constancy likely relies on short-term memory rather than acquired preference through long-term memory induced by prior learning.

Concepts: Pollination, Flower, Pollinator decline, Pollination syndrome, Bee, Preference, Bumblebee, Bombus terrestris

1

Changes in flight direction in flying insects are largely due to roll, yaw and pitch rotations of their body. Head orientation is stabilized for most of the time by counter rotation. Here, we use high-speed video to analyse head- and body-movements of the bumblebee Bombus terrestris while approaching and departing from a food source located between three landmarks in an indoor flight-arena. The flight paths consist of almost straight flight segments that are interspersed with rapid turns. These short and fast yaw turns (“saccades”) are usually accompanied by even faster head yaw turns that change gaze direction. Since a large part of image rotation is thereby reduced to brief instants of time, this behavioural pattern facilitates depth perception from visual motion parallax during the intersaccadic intervals. The detailed analysis of the fine structure of the bees' head turning movements shows that the time course of single head saccades is very stereotypical. We find a consistent relationship between the duration, peak velocity and amplitude of saccadic head movements, which in its main characteristics resembles the so-called “saccadic main sequence” in humans. The fact that bumblebee head saccades are highly stereotyped as in humans, may hint at a common principle, where fast and precise motor control is used to reliably reduce the time during which the retinal images moves.

Concepts: Vision, Depth perception, Classical mechanics, Bee, Bumblebee, Star, Parallax, Bombus terrestris

1

The development of bumble bee (Bombus terrestris audax) colonies which had foraged for 5 weeks on flowering winter oilseed rape grown from seed treated with thiamethoxam (as Cruiser OSR) was assessed (2 control, 1 treated field). Colony development was evaluated by monitoring the colony mass, forager activity was assessed, both at the hive and within the crop, and the contribution of oilseed rape to the pollen stored within the colony was analysed.

Concepts: Honey bee, Pollination, Pollinator decline, Bee, Bumblebee, Apidae, Bombus terrestris, Bumblebees