Discover the most talked about and latest scientific content & concepts.

Concept: Biotic component


The health of the honeybee and, indirectly, global crop production are threatened by several biotic and abiotic factors, which play a poorly defined role in the induction of widespread colony losses. Recent descriptive studies suggest that colony losses are often related to the interaction between pathogens and other stress factors, including parasites. Through an integrated analysis of the population and molecular changes associated with the collapse of honeybee colonies infested by the parasitic mite Varroa destructor, we show that this parasite can de-stabilise the within-host dynamics of Deformed wing virus (DWV), transforming a cryptic and vertically transmitted virus into a rapidly replicating killer, which attains lethal levels late in the season. The de-stabilisation of DWV infection is associated with an immunosuppression syndrome, characterized by a strong down-regulation of the transcription factor NF-κB. The centrality of NF-κB in host responses to a range of environmental challenges suggests that this transcription factor can act as a common currency underlying colony collapse that may be triggered by different causes. Our results offer an integrated account for the multifactorial origin of honeybee losses and a new framework for assessing, and possibly mitigating, the impact of environmental challenges on honeybee health.

Concepts: Immune system, DNA, Bacteria, Parasitism, Beekeeping, Biotic component, Varroa destructor, Deformed wing virus


Mosquito feeding behaviour determines the degree of vector-host contact and may have a serious impact on the risk of West Nile virus (WNV) epidemics. Feeding behaviour also interacts with other biotic and abiotic factors that affect virus amplification and transmission.

Concepts: Mosquito, Ribavirin, Dengue fever, Mosquito control, West Nile virus, DEET, Biotic component, Abiotic component


The 24-h day involves cycles in environmental factors that impact organismal fitness. This is thought to select for organisms to regulate their temporal biology accordingly, through circadian and diel rhythms. In addition to rhythms in abiotic factors (such as light and temperature), biotic factors, including ecological interactions, also follow daily cycles. How daily rhythms shape, and are shaped by, interactions between organisms is poorly understood. Here, we review an emerging area, namely the causes and consequences of daily rhythms in the interactions between vectors, their hosts and the parasites they transmit. We focus on mosquitoes, malaria parasites and vertebrate hosts, because this system offers the opportunity to integrate from genetic and molecular mechanisms to population dynamics and because disrupting rhythms offers a novel avenue for disease control.

Concepts: Gene, Genetics, Evolution, Biology, Malaria, Ecology, Biotic component, Abiotic component


Ticks are the major vectors of most disease-causing agents to humans, companion animals and wildlife. Moreover, ticks transmit a greater variety of pathogenic agents than any other blood-feeding arthropod. Ticks have been expanding their geographic ranges in recent decades largely due to climate change. Furthermore, tick populations in many areas of their past and even newly established localities have increased in abundance. These dynamic changes present new and increasing severe public health threats to humans, livestock and companion animals in areas where they were previously unknown or were considered to be of minor importance. Here in this review, the geographic status of four representative tick species are discussed in relation to these public health concerns, namely, the American dog tick,Dermacentor variabilis, the lone star tick,Amblyomma americanum, the Gulf Coast Tick,Amblyomma maculatumand the black-legged tick,Ixodes scapularis. Both biotic and abiotic factors that may influence future range expansion and successful colony formation in new habitats are discussed.

Concepts: Lyme disease, Tick, Ixodes scapularis, Arachnid, North America, Dog, Biotic component, Abiotic component


Biogeographical shifts are a ubiquitous global response to climate change. However, observed shifts across taxa and geographical locations are highly variable and only partially attributable to climatic conditions. Such variable outcomes result from the interaction between local climatic changes and other abiotic and biotic factors operating across species ranges. Among them, external directional forces such as ocean and air currents influence the dispersal of nearly all marine and many terrestrial organisms. Here, using a global meta-dataset of observed range shifts of marine species, we show that incorporating directional agreement between flow and climate significantly increases the proportion of explained variance. We propose a simple metric that measures the degrees of directional agreement of ocean (or air) currents with thermal gradients and considers the effects of directional forces in predictions of climate-driven range shifts. Ocean flows are found to both facilitate and hinder shifts depending on their directional agreement with spatial gradients of temperature. Further, effects are shaped by the locations of shifts in the range (trailing, leading or centroid) and taxonomic identity of species. These results support the global effects of climatic changes on distribution shifts and stress the importance of framing climate expectations in reference to other non-climatic interacting factors.

Concepts: Biology, Ecology, Climate, Weather, Ecosystem, Climate change, Ocean, Biotic component


A number of different types of induced resistance have been defined based on differences in signalling pathways and spectra of effectiveness, including systemic acquired resistance and induced systemic resistance. Such resistance can be induced in plants by application of a variety of biotic and abiotic agents. The resulting resistance tends to be broad-spectrum and can be long-lasting, but is rarely complete, with most inducing agents reducing disease by between 20 and 85%. Since induced resistance is a host response, its expression under field conditions is likely to be influenced by a number of factors, including the environment, genotype, crop nutrition and the extent to which plants are already induced. Although research in this area has increased over the last few years, our understanding of the impact of these influences on the expression of induced resistance is still poor. There have also been a number of studies in recent years aimed at understanding of how best to use induced resistance in practical crop protection. However, such studies are relatively rare and further research geared towards incorporating induced resistance into disease management programmes, if appropriate, is required.

Concepts: Cancer, Disease, Evolution, Environment, Future, Environmental science, Biotic component, Systemic acquired resistance


Reports from state health departments and the Centers for Disease Control and Prevention indicate that the annual number of reported human vibriosis cases in New England has increased in the past decade. Concurrently, there has been a shift in both the spatial distribution and seasonal detection of Vibrio spp. throughout the region based on limited monitoring data. To determine environmental factors that may underlie these emerging conditions, this study focuses on a long-term database of Vibrio parahaemolyticus concentrations in oyster samples generated from data collected from the Great Bay Estuary, New Hampshire over a period of seven consecutive years. Oyster samples from two distinct sites were analyzed for V. parahaemolyticus abundance, noting significant relationships with various biotic and abiotic factors measured during the same period of study. We developed a predictive modeling tool capable of estimating the likelihood of V. parahaemolyticus presence in coastal New Hampshire oysters. Results show that the inclusion of chlorophyll a concentration to an empirical model otherwise employing only temperature and salinity variables, offers improved predictive capability for modeling the likelihood of V. parahaemolyticus in the Great Bay Estuary.

Concepts: Oyster, Environmental science, New England, New Hampshire, Vibrio, Biotic component, Chesapeake Bay, Vibrio parahaemolyticus


Fusion is an important life history strategy for clonal organisms to increase access to shared resources, to compete for space, and to recover from disturbance. For reef building corals, fragmentation and colony fusion are key components of resilience to disturbance. Observations of small fragments spreading tissue and fusing over artificial substrates prompted experiments aimed at further characterizing Atlantic and Pacific corals under various conditions. Small (∼1-3 cm(2)) fragments from the same colony spaced regularly over ceramic tiles resulted in spreading at rapid rates (e.g., tens of square centimeters per month) followed by isogenic fusion. Using this strategy, we demonstrate growth, in terms of area encrusted and covered by living tissue, of Orbicella faveolata, Pseudodiploria clivosa, and Porites lobata as high as 63, 48, and 23 cm(2) per month respectively. We found a relationship between starting and ending size of fragments, with larger fragments growing at a faster rate. Porites lobata showed significant tank effects on rates of tissue spreading indicating sensitivity to biotic and abiotic factors. The tendency of small coral fragments to encrust and fuse over a variety of surfaces can be exploited for a variety of applications such as coral cultivation, assays for coral growth, and reef restoration.

Concepts: Coral, Coral reef, Scleractinia, Anthozoa, Polyp, Biotic component, Abiotic component, Microatoll


Death is a universal phenomenon; however, is there “life after death?” This topic has been investigated for centuries but still there are gray areas that have yet to be elucidated. Forensic microbiologists are developing new applications to investigate the dynamic and coordinated changes in microbial activity that occur when a human host dies. There is currently a paucity of explorations of the thanatomicrobiome (thanatos-, Greek for death) and epinecrotic communities (microbial communities residing in and/or moving on the surface of decomposing remains). Ongoing studies can help clarify the structure and function of these postmortem microbiomes. Human microbiome studies have revealed that 75-90% of cells in the body prior to death are microbial. Upon death, putrefaction occurs and is a complicated process encompassing chemical degradation and autolysis of cells. Decomposition also involves the release of contents of the intestines due to enzymes under the effects of abiotic and biotic factors. These factors likely have predictable effects on postmortem microbial communities and can be leveraged for forensic studies. This mini review provides a critical examination of emerging research relating to thanatomicrobiome and epinecrotic communities, how each is studied, and possible strategies of stochastic processes.

Concepts: Bacteria, Death, Microbiology, Embalming, Chemical decomposition, Decomposition, Biotic component, Putrefaction


Plant biodiversity is often correlated with ecosystem functioning in terrestrial ecosystems. However, we know little about the relative and combined effects of above- and belowground biodiversity on multiple ecosystem functions (for example, ecosystem multifunctionality, EMF) or how climate might mediate those relationships. Here we tease apart the effects of biotic and abiotic factors, both above- and belowground, on EMF on the Tibetan Plateau, China. We found that a suite of biotic and abiotic variables account for up to 86% of the variation in EMF, with the combined effects of above- and belowground biodiversity accounting for 45% of the variation in EMF. Our results have two important implications: first, including belowground biodiversity in models can improve the ability to explain and predict EMF. Second, regional-scale variation in climate, and perhaps climate change, can determine, or at least modify, the effects of biodiversity on EMF in natural ecosystems.

Concepts: Biodiversity, Ecology, Climate, Ecosystem, Nature, Ecosystem ecology, Biotic component, Abiotic component